

Computers as
Components

Principles of Embedded
Computing System Design

About the Author

Wayne Wolf is Professor,Rhesea“Ray”P. Farmer Distinguished Chair in Embedded
Computing,and Georgia Research Alliance Eminent Scholar at the Georgia Institute
of Technology. Before joining Georgia Tech, he was with Princeton University and
AT&T Bell Laboratories in Murray Hill, New Jersey. He received his B.S., M.S., and
Ph.D. in electrical engineering from Stanford University. He is well known for his
research in the areas of hardware/software co-design, embedded computing,VLSI
CAD, and multimedia computing systems. He is a fellow of the IEEE and ACM. He
co-founded several conferences in the area, including CODES, MPSoC, and Embed-
ded Systems Week. He was founding co-editor-in-chief of Design Automation for
Embedded Systems and founding editor-in-chief of ACM Transactions on Embed-
ded Computing Systems. He has received the ASEE Frederick E. Terman Award and
the IEEE Circuits and Society Education Award. He is also co-series editor of the
Morgan Kaufmann Series in Systems on Silicon.

Computers as
Components

Principles of Embedded
Computing System Design

Second Edition

Wayne Wolf

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY •TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper. �©
Copyright © 2008, Wayne Hendrix Wolf. Published by Elsevier Inc. All rights reserved.

Cover Images © iStockphoto.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior
written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com.
You may also complete your request online via the Elsevier homepage (http://elsevier.com), by
selecting “Support & Contact” then “Copyright and Permission”and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Wolf, Wayne Hendrix.

Computers as components: principles of embedded computing system design/by Wayne Wolf – 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-12-374397-8 (pbk. : alk. paper)

1. System design. 2. Embedded computer systems. I. Title.
QA76.9.S88W64 2001
004.16–dc22

2008012300

ISBN: 978-0-12-374397-8

For information on all Morgan Kaufmann publications,
visit our website at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
08 09 10 11 12 5 4 3 2 1

To Nancy and Alec

Disclaimer

Designations used by companies to distinguish their products are often claimed
as trademarks or registered trademarks. In all instances where Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all
capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

ARM, the ARM Powered logo, StrongARM,Thumb and ARM7TDMI are registered
trademarks of ARM Ltd. ARM Powered, ARM7, ARM7TDMI-S, ARM710T, ARM740T,
ARM9, ARM9TDMI, ARM940T, ARM920T, EmbeddedICE, ARM7T-S, Embedded-
ICE-RT, ARM9E, ARM946E, ARM966E, ARM10, AMBA, and Multi-ICE are trademarks
of ARM Limited. All other brand names or product names are the property of their
respective holders. “ARM” is used to represent ARM Holdings plc (LSE: ARM and
NASDAQ:ARMHY); its operating company,ARM Ltd; and the regional subsidiaries:
ARM, INC., ARM KK; ARM Korea, Ltd.

Microsoft and Windows are registered trademarks and Windows NT is a trade-
mark of Microsoft Corporation. Pentium is a trademark of Intel Corporation.All other
trademarks and logos are property of their respective holders. TMS320C55x, C55x,
and Code Composer Studio are trademarks of Texas Instruments Incorporated.

Foreword to The First Edition

Digital system design has entered a new era. At a time when the design of
microprocessors has shifted into a classical optimization exercise, the design of
embedded computing systems in which microprocessors are merely components
has become a wide-open frontier. Wireless systems, wearable systems, networked
systems,smart appliances,industrial process systems,advanced automotive systems,
and biologically interfaced systems provide a few examples from across this new
frontier.

Driven by advances in sensors, transducers, microelectronics, processor per-
formance, operating systems, communications technology, user interfaces, and
packaging technology on the one hand, and by a deeper understanding of human
needs and market possibilities on the other, a vast new range of systems and appli-
cations is opening up. It is now up to the architects and designers of embedded
systems to make these possibilities a reality.

However, embedded system design is practiced as a craft at the present time.
Although knowledge about the component hardware and software subsystems is
clear, there are no system design methodologies in common use for orchestrating
the overall design process, and embedded system design is still run in an ad hoc
manner in most projects.

Some of the challenges in embedded system design come from changes in under-
lying technology and the subtleties of how it can all be correctly mingled and
integrated. Other challenges come from new and often unfamiliar types of sys-
tem requirements. Then too, improvements in infrastructure and technology for
communication and collaboration have opened up unprecedented possibilities for
fast design response to market needs. However, effective design methodologies
and associated design tools have not been available for rapid follow-up of these
opportunities.

At the beginning of the VLSI era, transistors and wires were the fundamental
components, and the rapid design of computers on a chip was the dream. Today
the CPU and various specialized processors and subsystems are merely basic com-
ponents, and the rapid, effective design of very complex embedded systems is the
dream. Not only are system specifications now much more complex,but they must
also meet real-time deadlines, consume little power, effectively support complex
real-time user interfaces,be very cost-competitive,and be designed to be upgradable.

Wayne Wolf has created the first textbook to systematically deal with this array
of new system design requirements and challenges. He presents formalisms and a
methodology for embedded system design that can be employed by the new type of
“tall-thin”system architect who really understands the foundations of system design
across a very wide range of its component technologies.

Moving from the basics of each technology dimension,Wolf presents formalisms
for specifying and modeling system structures and behaviors and then clarifies these

vii

viii Foreword to The First Edition

ideas through a series of design examples. He explores the complexities involved
and how to systematically deal with them. You will emerge with a sense of clarity
about the nature of the design challenges ahead and with knowledge of key methods
and tools for tackling those challenges.

As the first textbook on embedded system design,this book will prove invaluable
as a means for acquiring knowledge in this important and newly emerging field.
It will also serve as a reference in actual design practice and will be a trusted
companion in the design adventures ahead. I recommend it to you highly.

Lynn Conway
Professor Emerita, Electrical Engineering and

Computer Science University of Michigan

Contents

About the Author. ii

Foreword to The First Edition . vii

List of Examples . xvii

Preface to The Second Edition . xix

Preface to The First Edition . xxi

CHAPTER 1 Embedded Computing 1
Introduction . 1

1.1 Complex Systems and Microprocessors . 1
1.1.1 Embedding Computers . 2
1.1.2 Characteristics of Embedded Computing

Applications . 4
1.1.3 Why Use Microprocessors? . 6
1.1.4 The Physics of Software. 8
1.1.5 Challenges in Embedded Computing System

Design . 8
1.1.6 Performance in Embedded Computing 10

1.2 The Embedded System Design Process . 11
1.2.1 Requirements . 12
1.2.2 Specification . 17
1.2.3 Architecture Design . 18
1.2.4 Designing Hardware and Software

Components . 20
1.2.5 System Integration . 20

1.3 Formalisms for System Design . 21
1.3.1 Structural Description . 22
1.3.2 Behavioral Description . 27

1.4 Model Train Controller . 30
1.4.1 Requirements . 31
1.4.2 DCC . 32
1.4.3 Conceptual Specification . 34
1.4.4 Detailed Specification . 37
1.4.5 Lessons Learned . 44

1.5 A Guided Tour of This Book . 45
1.5.1 Chapter 2: Instruction Sets. 46
1.5.2 Chapter 3: CPUs . 46
1.5.3 Chapter 4: Bus-Based Computer Systems 46

ix

x Contents

1.5.4 Chapter 5: Program Design and Analysis 47
1.5.5 Chapter 6: Processes and Operating Systems 48
1.5.6 Chapter 7: Multiprocessors . 49
1.5.7 Chapter 8: Networks . 50
1.5.8 Chapter 9: System Design Techniques. 50
Summary. 51
Further Reading . 51
Questions . 52
Lab Exercises . 53

CHAPTER 2 Instruction Sets 55
Introducton. 55

2.1 Preliminaries . 55
2.1.1 Computer Architecture Taxonomy . 55
2.1.2 Assembly Language . 58

2.2 ARM Processor . 59
2.2.1 Processor and Memory Organization 60
2.2.2 Data Operations . 61
2.2.3 Flow of Control . 69

2.3 TI C55x DSP . 76
2.3.1 Processor and Memory Organization 76
2.3.2 Addressing Modes . 78
2.3.3 Data Operations . 82
2.3.4 Flow of Control . 83
2.3.5 C Coding Guidelines . 85
Summary. 86
Further Reading . 86
Questions . 86
Lab Exercises . 89

CHAPTER 3 CPUs 91
Introduction . 91

3.1 Programming Input and Output . 91
3.1.1 Input and Output Devices . 92
3.1.2 Input and Output Primitives . 93
3.1.3 Busy-Wait I/O . 95
3.1.4 Interrupts . 96

3.2 Supervisor Mode, Exceptions, and Traps . 110
3.2.1 Supervisor Mode . 111
3.2.2 Exceptions . 111
3.2.3 Traps . 112

3.3 Co-Processors . 112

Contents xi

3.4 Memory System Mechanisms. 113
3.4.1 Caches . 113
3.4.2 Memory Management Units and Address

Translation . 119
3.5 CPU Performance . 124

3.5.1 Pipelining . 124
3.5.2 Caching . 128

3.6 CPU Power Consumption . 129
3.7 Design Example: Data Compressor . 134

3.7.1 Requirements and Algorithm . 134
3.7.2 Specification . 136
3.7.3 Program Design. 139
3.7.4 Testing . 145
Summary. 147
Further Reading . 147
Questions . 148
Lab Exercises . 151

CHAPTER 4 Bus-Based Computer Systems 153
Introduction . 153

4.1 The CPU Bus . 153
4.1.1 Bus Protocols . 154
4.1.2 DMA . 160
4.1.3 System Bus Configurations. 162
4.1.4 AMBA Bus . 165

4.2 Memory Devices . 166
4.2.1 Memory Device Organization . 166
4.2.2 Random-Access Memories . 167
4.2.3 Read-Only Memories . 169

4.3 I/O devices . 169
4.3.1 Timers and Counters . 169
4.3.2 A/D and D/A Converters . 171
4.3.3 Keyboards. 171
4.3.4 LEDs . 173
4.3.5 Displays . 173
4.3.6 Touchscreens . 175

4.4 Component Interfacing . 175
4.4.1 Memory Interfacing . 176
4.4.2 Device Interfacing . 176

4.5 Designing with Microprocessors. 177
4.5.1 System Architecture . 177
4.5.2 Hardware Design . 179
4.5.3 The PC as a Platform . 180

xii Contents

4.6 Development and Debugging . 183
4.6.1 Development Environments . 183
4.6.2 Debugging Techniques . 184
4.6.3 Debugging Challenges . 187

4.7 System-Level Performance Analysis . 189
4.7.1 System-Level Performance Analysis. 189
4.7.2 Parallelism. 194

4.8 Design Example: Alarm Clock. 196
4.8.1 Requirements . 196
4.8.2 Specification . 198
4.8.3 System Architecture . 200
4.8.4 Component Design and Testing . 203
4.8.5 System Integration and Testing . 204
Summary. 204
Further Reading . 205
Questions . 205
Lab Exercises . 207

CHAPTER 5 Program Design and Analysis 209
Introduction . 209

5.1 Components for Embedded Programs . 210
5.1.1 State Machines . 210
5.1.2 Stream-Oriented Programming and Circular

Buffers. 212
5.1.3 Queues . 213

5.2 Models of Programs . 215
5.2.1 Data Flow Graphs . 215
5.2.2 Control/Data Flow Graphs . 217

5.3 Assembly, Linking, and Loading . 220
5.3.1 Assemblers . 222
5.3.2 Linking . 225

5.4 Basic Compilation Techniques . 227
5.4.1 Statement Translation . 229
5.4.2 Procedures . 233
5.4.3 Data Structures . 234

5.5 Program Optimization . 236
5.5.1 Expression Simplification . 236
5.5.2 Dead Code Elimination . 237
5.5.3 Procedure Inlining . 237
5.5.4 Loop Transformations . 238
5.5.5 Register Allocation . 239
5.5.6 Scheduling . 244
5.5.7 Instruction Selection . 246

Contents xiii

5.5.8 Understanding and Using your Compiler 247
5.5.9 Interpreters and JIT Compilers . 247

5.6 Program-Level Performance Analysis . 248
5.6.1 Elements of Program Performance . 250
5.6.2 Measurement-Driven Performance Analysis 254

5.7 Software Performance Optimization . 257
5.7.1 Loop Optimizations . 257
5.7.2 Performance Optimization Strategies 261

5.8 Program-Level Energy and Power Analysis
and Optimization. 262

5.9 Analysis and Optimization of Program Size . 266
5.10 Program Validation and Testing . 267

5.10.1 Clear-Box Testing . 268
5.10.2 Black-Box Testing . 276
5.10.3 Evaluating Function Tests . 277

5.11 Software Modem . 278
5.11.1 Theory of Operation and Requirements 278
5.11.2 Specification . 280
5.11.3 System Architecture . 280
5.11.4 Component Design and Testing . 282
5.11.5 System Integration and Testing . 282
Summary. 282
Further Reading . 283
Questions . 283
Lab Exercises . 291

CHAPTER 6 Processes and Operating Systems 293
Introduction . 293

6.1 Multiple Tasks and Multiple Processes . 294
6.1.1 Tasks and Processes . 294
6.1.2 Multirate Systems . 296
6.1.3 Timing Requirements on Processes 298
6.1.4 CPU Metrics . 302
6.1.5 Process State and Scheduling . 303
6.1.6 Some Scheduling Policies . 303
6.1.7 Running Periodic Processes . 306

6.2 Preemptive Real-Time Operating Systems . 308
6.2.1 Preemption . 308
6.2.2 Priorities . 309
6.2.3 Processes and Context . 310
6.2.4 Processes and Object-Oriented Design 315

6.3 Priority-Based Scheduling. 316
6.3.1 Rate-Monotonic Scheduling. 316
6.3.2 Earliest-Deadline-First Scheduling . 320

xiv Contents

6.3.3 RMS vs. EDF . 323
6.3.4 A Closer Look at Our Modeling Assumptions. 324

6.4 Interprocess Communication Mechanisms. 325
6.4.1 Shared Memory Communication . 326
6.4.2 Message Passing . 329
6.4.3 Signals . 329

6.5 Evaluating Operating System Performance . 330
6.6 Power Management and Optimization for Processes 333
6.7 Design Example: Telephone Answering Machine 336

6.7.1 Theory of Operation and Requirements 336
6.7.2 Specification . 340
6.7.3 System Architecture . 342
6.7.4 Component Design and Testing . 344
6.7.5 System Integration and Testing . 345
Summary. 345
Further Reading . 346
Questions . 346
Lab Exercises . 352

CHAPTER 7 Multiprocessors 353
Introduction . 353

7.1 Why Multiprocessors?. 353
7.2 CPUs and Accelerators . 356

7.2.1 System Architecture Framework. 357
7.2.2 System Integration and Debugging. 360

7.3 Multiprocessor Performance Analysis . 360
7.3.1 Accelerators and Speedup . 360
7.3.2 Performance Effects of Scheduling and Allocation . . . 364
7.3.3 Buffering and Performance . 368

7.4 Consumer Electronics Architecture . 369
7.4.1 Use Cases and Requirements . 369
7.4.2 Platforms and Operating Systems . 371
7.4.3 Flash File Systems . 372

7.5 Design Example: Cell Phones . 373
7.6 Design Example: Compact DISCs and DVDs 375
7.7 Design Example: Audio Players . 380
7.8 Design Example: Digital Still Cameras . 381
7.9 Design Example: Video Accelerator . 384

7.9.1 Algorithm and Requirements . 384
7.9.2 Specification . 388
7.9.3 Architecture . 388
7.9.4 Component Design. 390
7.9.5 System Testing . 392

Contents xv

Summary. 392
Further Reading . 393
Questions . 393
Lab Exercises . 395

CHAPTER 8 Networks 397
Introduction . 397

8.1 Distributed Embedded Architectures . 398
8.1.1 Why Distributed? . 399
8.1.2 Network Abstractions . 399
8.1.3 Hardware and Software Architectures 401
8.1.4 Message Passing Programming . 404

8.2 Networks for Embedded Systems . 405
8.2.1 The I2C Bus . 406
8.2.2 Ethernet . 411
8.2.3 Fieldbus . 413

8.3 Network-Based Design . 413
8.4 Internet-Enabled Systems . 416

8.4.1 Internet . 417
8.4.2 Internet Applications . 419
8.4.3 Internet Security. 421

8.5 Vehicles as Networks. 421
8.5.1 Automotive Networks . 422
8.5.2 Avionics . 425

8.6 Sensor Networks . 426
8.7 Design Example: Elevator Controller . 427

8.7.1 Theory of Operation and Requirements 428
8.7.2 Specification . 430
8.7.3 Architecture . 431
8.7.4 Testing . 433
Summary. 434
Further Reading . 434
Questions . 434
Lab Exercises . 436

CHAPTER 9 System Design Techniques 437
Introduction . 437

9.1 Design Methodologies . 437
9.1.1 Why Design Methodologies? . 437
9.1.2 Design Flows . 439

9.2 Requirements Analysis . 446

xvi Contents

9.3 Specifications . 447
9.3.1 Control-Oriented Specification Languages. 447
9.3.2 Advanced Specifications . 451

9.4 System Analysis and Architecture Design . 454
9.5 Quality Assurance . 457

9.5.1 Quality Assurance Techniques . 460
9.5.2 Verifying the Specification . 462
9.5.3 Design Reviews. 464
Summary. 466
Further Reading . 466
Questions . 466
Lab Exercises . 467

APPENDIX A UML Notations 469
Introduction . 469

A.1 Primitive Elements. 469
A.2 Diagram Types . 469

A.2.1 Class Diagram . 471
A.2.2 State Diagram . 471
A.2.3 Sequence and Collaboration Diagrams 473

Glossary 475

References 489

Index 497

List of Examples

Application Example 1.1 BMW 850i brake and stability control system 3
Example 1.1 Requirements analysis of a GPS moving map . 15
Example 2.1 Status bit computation in the ARM .. 62
Example 2.2 C assignments in ARM instructions . 67
Example 2.3 Implementing an if statement in ARM .. 70
Example 2.4 Implementing the C switch statement in ARM 71
Application Example 2.1 FIR filters . 72
Example 2.5 An FIR filter for the ARM .. 72
Example 2.6 Procedure calls in ARM . 75
Application Example 3.1 The 8251 UART . 92
Example 3.1 Memory-mapped I/O on ARM.. 94
Example 3.2 Busy-wait I/O programming. 95
Example 3.3 Copying characters from input to output using

busy-wait I/O. 96
Example 3.4 Copying characters from input to output with basic

interrupts . 98
Example 3.5 Copying characters from input to output with interrupts

and buffers . 99
Example 3.6 Debugging interrupt code . 103
Example 3.7 I/O with prioritized interrupts . 106
Example 3.8 Direct-mapped vs. set-associative caches . 117
Example 3.9 Execution time of a for loop on the ARM .. 127
Application Example 3.2 Energy efficiency features in the PowerPC 603. . . . 130
Application Example 3.3 Power-saving modes of the StrongARM SA-1100 . . 132
Application Example 3.4 Huffman coding for text compression 134
Example 4.1 A glue logic interface . 176
Application Example 4.1 System organization of the Intel StrongARM

SA-1100 and SA-1111 . 182
Programming Example 4.1 Breakpoints . 185
Example 4.2 A timing error in real-time code . 187
Example 4.3 Performance bottlenecks in a bus-based system. 193
Programming Example 5.1 A software state machine . 210
Programming Example 5.2 A circular buffer implementation of an FIR

filter . 213
Programming Example 5.3 A buffer-based queue . 214
Example 5.1 Generating a symbol table . 223
Example 5.2 Compiling an arithmetic expression . 229
Example 5.3 Generating code for a conditional . 231
Example 5.4 Loop unrolling . 238
Example 5.5 Register allocation . 240

xvii

xviii List of Examples

Example 5.6 Operator scheduling for register allocation . 243
Example 5.7 Data-dependent paths in if statements . 251
Example 5.8 Paths in a loop . 252
Example 5.9 Cycle-accurate simulation . 256
Example 5.10 Data realignment and array padding . 260
Example 5.11 Controlling and observing programs . 268
Example 5.12 Choosing the paths to test . 270
Example 5.13 Condition testing with the branch testing strategy. 273
Application Example 6.1 Automotive engine control . 296
Application Example 6.2 A space shuttle software error . 300
Example 6.1 Utilization of a set of processes . 304
Example 6.2 Priority-driven scheduling. 309
Example 6.3 Rate-monotonic scheduling . 317
Example 6.4 Earliest-deadline-first scheduling. 320
Example 6.5 Priority inversion . 324
Example 6.6 Data dependencies and scheduling . 325
Example 6.7 Elastic buffers as shared memory . 326
Programming Example 6.1 Test-and-set operations . 328
Example 6.8 Scheduling and context switching overhead . 330
Example 6.9 Effects of scheduling on the cache . 332
Example 7.1 Performance effects of scheduling and allocation 365
Example 7.2 Overlapping computation and communication 366
Example 7.3 Buffers and latency . 368
Example 8.1 Data-push network architectures . 405
Example 8.2 Simple message delay for an I2C message. 414
Application Example 8.1 An Internet video camera . 420
Application Example 9.1 Loss of the Mars Climate Observer 439
Example 9.1 Concurrent engineering applied to telephone systems 444
Application Example 9.2 The TCAS II specification . 451
Example 9.2 CRC card analysis . 456
Application Example 9.3 The Therac-25 medical imaging system. 458

Preface to The Second Edition

Embedded computing is more important today than it was in 2000, when the first
edition of this book appeared. Embedded processors are in even more products,
ranging from toys to airplanes. Systems-on-chips now use up to hundreds of CPUs.
The cell phone is on its way to becoming the new standard computing platform.
As my column in IEEE Computer in September 2006 indicated, there are at least a
half-million embedded systems programmers in the world today,probably closer to
800,000.

In this edition I have tried to both update and revamp. One major change is
that the book now uses the TI TMS320C55x™ (C55x) DSP. I seriously rewrote the
discussion of real-time scheduling. I have tried to expand on performance analysis
as a theme at as many levels of abstraction as possible. Given the importance of
multiprocessors in even the most mundane embedded systems, this edition also
talks more generally about hardware/software co-design and multiprocessors.

One of the changes in the field is that this material is taught at lower and lower
levels of the curriculum. What used to be graduate material is now upper-division
undergraduate; some of this material will percolate down to the sophomore level
in the foreseeable future. I think that you can use subsets of this book to cover
both more advanced and more basic courses. Some advanced students may not
need the background material of the earlier chapters and you can spend more time
on software performance analysis, scheduling,and multiprocessors. When teaching
introductory courses,software performance analysis is an alternative path to explor-
ing microprocessor architectures as well as software; such courses can concentrate
on the first few chapters.

The new Web site for this book and my other books is http://www.
waynewolf.us. On this site, you can find overheads for the material in this book,
suggestions for labs, and links to more information on embedded systems.

ACKNOWLEDGMENTS
I would like to thank a number of people who helped me with this second edition.
Cathy Wicks and Naser Salameh of Texas Instruments gave me invaluable help in
figuring out the C55x. Richard Barry of freeRTOS.org not only graciously allowed
me to quote from the source code of his operating system but he also helped clarify
the explanation of that code. My editor at Morgan Kaufmann, Chuck Glaser, knew
when to be patient, when to be encouraging, and when to be cajoling. (He also
has great taste in sushi restaurants.) And of course, Nancy and Alec patiently let me
type away. Any problems, small or large, with this book are, of course, solely my
responsibility.

Wayne Wolf
Atlanta, GA, USA

xix

This page intentionally left blank

Preface to The First Edition

Microprocessors have long been a part of our lives. However,microprocessors have
become powerful enough to take on truly sophisticated functions only in the past
few years. The result of this explosion in microprocessor power, driven by Moore’s
Law, is the emergence of embedded computing as a discipline. In the early days of
microprocessors, when all the components were relatively small and simple, it was
necessary and desirable to concentrate on individual instructions and logic gates.
Today,when systems contain tens of millions of transistors and tens of thousands of
lines of high-level language code, we must use design techniques that help us deal
with complexity.

This book tries to capture some of the basic principles and techniques of this new
discipline of embedded computing. Some of the challenges of embedded computing
are well known in the desktop computing world. For example, getting the highest
performance out of pipelined, cached architectures often requires careful analysis
of program traces. Similarly, the techniques developed in software engineering for
specifying complex systems have become important with the growing complexity
of embedded systems. Another example is the design of systems with multiple
processes. The requirements on a desktop general-purpose operating system and
a real-time operating system are very different; the real-time techniques developed
over the past 30 years for larger real-time systems are now finding common use in
microprocessor-based embedded systems.

Other challenges are new to embedded computing. One good example is power
consumption.While power consumption has not been a major consideration in tra-
ditional computer systems,it is an essential concern for battery-operated embedded
computers and is important in many situations in which power supply capacity is
limited by weight, cost, or noise. Another challenge is deadline-driven program-
ming. Embedded computers often impose hard deadlines on completion times
for programs; this type of constraint is rare in the desktop world. As embedded
processors become faster, caches and other CPU elements also make execution
times less predictable. However, by careful analysis and clever programming, we
can design embedded programs that have predictable execution times even in the
face of unpredictable system components such as caches.

Luckily, there are many tools for dealing with the challenges presented by com-
plex embedded systems: high-level languages, program performance analysis tools,
processes and real-time operating systems, and more. But understanding how all
these tools work together is itself a complex task. This book takes a bottom-up
approach to understanding embedded system design techniques. By first under-
standing the fundamentals of microprocessor hardware and software,we can build
powerful abstractions that help us create complex systems.

xxi

xxii Preface to The First Edition

A NOTE TO EMBEDDED SYSTEM PROFESSIONALS
This book is not a manual for understanding a particular microprocessor. Why
should the techniques presented here be of interest to you? There are two rea-
sons. First,techniques such as high-level language programming and real-time opera-
ting systems are very important in making large, complex embedded systems that
actually work. The industry is littered with failed system designs that didn’t work
because their designers tried to hack their way out of problems rather than step-
ping back and taking a wider view of the problem. Second, the components used
to build embedded systems are constantly changing, but the principles remain
constant. Once you understand the basic principles involved in creating com-
plex embedded systems, you can quickly learn a new microprocessor (or even
programming language) and apply the same fundamental principles to your new
components.

A NOTE TO TEACHERS
The traditional microprocessor system design class originated in the 1970s when
microprocessors were exotic yet relatively limited.That traditional class emphasizes
breadboarding hardware and software to build a complete system. As a result, it
concentrates on the characteristics of a particular microprocessor, including its
instruction set, bus interface, and so on.

This book takes a more abstract approach to embedded systems. While I have
taken every opportunity to discuss real components and applications, this book
is fundamentally not a microprocessor data book. As a result, its approach may
seem initially unfamiliar. Rather than concentrating on particulars, the book tries to
study more generic examples to come up with more generally applicable principles.
However, I think that this approach is both fundamentally easier to teach and in
the long run more useful to students. It is easier because one can rely less on
complex lab setups and spend more time on pencil-and-paper exercises,simulations,
and programming exercises. It is more useful to the students because their eventual
work in this area will almost certainly use different components and facilities than
those used at your school. Once students learn fundamentals, it is much easier for
them to learn the details of new components.

Hands-on experience is essential in gaining physical intuition about embedded
systems. Some hardware building experience is very valuable; I believe that every
student should know the smell of burning plastic integrated circuit packages. But
I urge you to avoid the tyranny of hardware building. If you spend too much time
building a hardware platform, you will not have enough time to write interesting
programs for it. And as a practical matter, most classes do not have the time to let
students build sophisticated hardware platforms with high-performance I/O devices
and possibly multiple processors.A lot can be learned about hardware by measuring
and evaluating an existing hardware platform. The experience of programming

Preface to The First Edition xxiii

complex embedded systems will teach students quite a bit about hardware as
well—debugging interrupt-driven code is an experience that few students are likely
to forget.

A home page for the book (www.mkp.com/embed) includes overheads, instruc-
tor’s manual, lab materials, links to related Web sites, and a link to a password-
protected ftp site that contains solutions to the exercises.

ACKNOWLEDGMENTS
I owe a word of thanks to many people who helped me in the preparation of
this book. Several people gave me advice about various aspects of the book:
Steve Johnson (Indiana University) about specification, Louise Trevillyan and Mark
Charney (both IBM Research) on program tracing, Margaret Martonosi (Prince-
ton University) on cache miss equations, Randy Harr (Synopsys) on low power,
Phil Koopman (Carnegie Mellon University) on distributed systems, Joerg Henkel
(NEC C&C Labs) on low-power computing and accelerators, Lui Sha (Univer-
sity of Illinois) on real-time operating systems, John Rayfield (ARM) on the ARM
architecture, David Levine (Analog Devices) on compilers and SHARC, and Con
Korikis (Analog Devices) on the SHARC. Many people acted as reviewers at
various stages: David Harris (Harvey Mudd College); Jan Rabaey (University of
California at Berkeley); David Nagle (Carnegie Mellon University); Randy Harr (Syn-
opsys); Rajesh Gupta, Nikil Dutt, Frederic Doucet, and Vivek Sinha (University
of California at Irvine); Ronald D. Williams (University of Virginia); Steve Sapiro
(SC Associates); Paul Chow (University of Toronto); Bernd G. Wenzel (Eurostep);
Steve Johnson (Indiana University); H. Alan Mantooth (University of Arkansas);
Margarida Jacome (University of Texas at Austin); John Rayfield (ARM); David
Levine (Analog Devices); Ardsher Ahmed (University of Massachusetts/Dartmouth
University); and Vijay Madisetti (Georgia Institute of Technology). I also owe a
big word of thanks to my editor, Denise Penrose. Denise put in a great deal
of effort finding and talking to potential users of this book to help us under-
stand what readers wanted to learn. This book owes a great deal to her insight
and persistence. Cheri Palmer and her production team did an excellent job
on an impossibly tight schedule. The mistakes and miscues are, of course, all
mine.

This page intentionally left blank

CHAPTER

1Embedded Computing
■ Why we embed microprocessors in systems.

■ What is difficult and unique about embedding computing.

■ Design methodologies.

■ System specification.

■ A guided tour of this book.

INTRODUCTION
In this chapter we set the stage for our study of embedded computing system design.
In order to understand the design processes, we first need to understand how and
why microprocessors are used for control, user interface, signal processing, and
many other tasks. The microprocessor has become so common that it is easy to
forget how hard some things are to do without it.

We first review the various uses of microprocessors and then review the major
reasons why microprocessors are used in system design–delivering complex behav-
iors, fast design turnaround, and so on. Next, in Section 1.2, we walk through the
design of an example system to understand the major steps in designing a system.
Section 1.3 includes an in-depth look at techniques for specifying embedded sys-
tems—we use these specification techniques throughout the book. In Section 1.4,
we use a model train controller as an example for applying the specification tech-
niques introduced in Section1.3 that we use throughout the rest of the book.
Section 1.5 provides a chapter-by-chapter tour of the book.

1.1 COMPLEX SYSTEMS AND MICROPROCESSORS
What is an embedded computer system? Loosely defined, it is any device that
includes a programmable computer but is not itself intended to be a general-purpose
computer.Thus,a PC is not itself an embedded computing system,although PCs are
often used to build embedded computing systems. But a fax machine or a clock
built from a microprocessor is an embedded computing system.

1

2 CHAPTER 1 Embedded Computing

This means that embedded computing system design is a useful skill for many
types of product design. Automobiles, cell phones, and even household appliances
make extensive use of microprocessors. Designers in many fields must be able to
identify where microprocessors can be used, design a hardware platform with I/O
devices that can support the required tasks, and implement software that performs
the required processing. Computer engineering, like mechanical design or thermo-
dynamics,is a fundamental discipline that can be applied in many different domains.
But of course, embedded computing system design does not stand alone. Many of
the challenges encountered in the design of an embedded computing system are
not computer engineering—for example, they may be mechanical or analog electri-
cal problems. In this book we are primarily interested in the embedded computer
itself, so we will concentrate on the hardware and software that enable the desired
functions in the final product.

1.1.1 Embedding Computers
Computers have been embedded into applications since the earliest days of com-
puting. One example is the Whirlwind, a computer designed at MIT in the late
1940s and early 1950s. Whirlwind was also the first computer designed to support
real-time operation and was originally conceived as a mechanism for controlling
an aircraft simulator. Even though it was extremely large physically compared to
today’s computers (e.g., it contained over 4,000 vacuum tubes), its complete design
from components to system was attuned to the needs of real-time embedded com-
puting. The utility of computers in replacing mechanical or human controllers was
evident from the very beginning of the computer era—for example,computers were
proposed to control chemical processes in the late 1940s [Sto95].

A microprocessor is a single-chip CPU. Very large scale integration (VLSI)
stet—the acronym is the name technology has allowed us to put a complete CPU on
a single chip since 1970s, but those CPUs were very simple. The first microproces-
sor, the Intel 4004, was designed for an embedded application, namely, a calculator.
The calculator was not a general-purpose computer—it merely provided basic
arithmetic functions. However, Ted Hoff of Intel realized that a general-purpose
computer programmed properly could implement the required function, and that
the computer-on-a-chip could then be reprogrammed for use in other products
as well. Since integrated circuit design was (and still is) an expensive and time-
consuming process, the ability to reuse the hardware design by changing the
software was a key breakthrough. The HP-35 was the first handheld calculator to
perform transcendental functions [Whi72]. It was introduced in 1972, so it used
several chips to implement the CPU,rather than a single-chip microprocessor. How-
ever, the ability to write programs to perform math rather than having to design
digital circuits to perform operations like trigonometric functions was critical to
the successful design of the calculator.

Automobile designers started making use of the microprocessor soon after
single-chip CPUs became available. The most important and sophisticated use of

1.1 Complex Systems and Microprocessors 3

microprocessors in automobiles was to control the engine:determining when spark
plugs fire, controlling the fuel/air mixture, and so on. There was a trend toward
electronics in automobiles in general—electronic devices could be used to replace
the mechanical distributor. But the big push toward microprocessor-based engine
control came from two nearly simultaneous developments: The oil shock of the
1970s caused consumers to place much higher value on fuel economy, and fears of
pollution resulted in laws restricting automobile engine emissions. The combina-
tion of low fuel consumption and low emissions is very difficult to achieve; to meet
these goals without compromising engine performance,automobile manufacturers
turned to sophisticated control algorithms that could be implemented only with
microprocessors.

Microprocessors come in many different levels of sophistication; they are usu-
ally classified by their word size. An 8-bit microcontroller is designed for low-cost
applications and includes on-board memory and I/O devices; a 16-bit microcon-
troller is often used for more sophisticated applications that may require either
longer word lengths or off-chip I/O and memory;and a 32-bit RISC microprocessor
offers very high performance for computation-intensive applications.

Given the wide variety of microprocessor types available,it should be no surprise
that microprocessors are used in many ways. There are many household uses of
microprocessors. The typical microwave oven has at least one microprocessor to
control oven operation. Many houses have advanced thermostat systems, which
change the temperature level at various times during the day.The modern camera is
a prime example of the powerful features that can be added under microprocessor
control.

Digital television makes extensive use of embedded processors. In some cases,
specialized CPUs are designed to execute important algorithms—an example is
the CPU designed for audio processing in the SGS Thomson chip set for DirecTV
[Lie98]. This processor is designed to efficiently implement programs for digital
audio decoding. A programmable CPU was used rather than a hardwired unit for
two reasons: First, it made the system easier to design and debug; and second, it
allowed the possibility of upgrades and using the CPU for other purposes.

A high-end automobile may have 100 microprocessors, but even inexpensive
cars today use 40 microprocessors. Some of these microprocessors do very simple
things such as detect whether seat belts are in use. Others control critical functions
such as the ignition and braking systems.

Application Example 1.1 describes some of the microprocessors used in the
BMW 850i.

Application Example 1.1

BMW 850i brake and stability control system
The BMW 850i was introduced with a sophisticated system for controlling the wheels of the
car. An antilock brake system (ABS) reduces skidding by pumping the brakes. An automatic

4 CHAPTER 1 Embedded Computing

stability control (ASC � T) system intervenes with the engine during maneuvering to improve
the car’s stability. These systems actively control critical systems of the car; as control systems,
they require inputs from and output to the automobile.

Let’s first look at the ABS. The purpose of an ABS is to temporarily release the brake on
a wheel when it rotates too slowly—when a wheel stops turning, the car starts skidding and
becomes hard to control. It sits between the hydraulic pump, which provides power to the
brakes, and the brakes themselves as seen in the following diagram. This hookup allows the
ABS system to modulate the brakes in order to keep the wheels from locking. The ABS system
uses sensors on each wheel to measure the speed of the wheel. The wheel speeds are used
by the ABS system to determine how to vary the hydraulic fluid pressure to prevent the wheels
from skidding.

Sensor

Sensor Sensor

Sensor

Hydraulic
pump

Brake Brake

Brake BrakeABS

The ASC � T system’s job is to control the engine power and the brake to improve the
car’s stability during maneuvers. The ASC � T controls four different systems: throttle, ignition
timing, differential brake, and (on automatic transmission cars) gear shifting. The ASC � T
can be turned off by the driver, which can be important when operating with tire snow chains.

The ABS and ASC � T must clearly communicate because the ASC � T interacts with the
brake system. Since the ABS was introduced several years earlier than the ASC � T, it was
important to be able to interface ASC � T to the existing ABS module, as well as to other existing
electronic modules. The engine and control management units include the electronically con-
trolled throttle, digital engine management, and electronic transmission control. The ASC � T
control unit has two microprocessors on two printed circuit boards, one of which concentrates
on logic-relevant components and the other on performance-specific components.

1.1.2 Characteristics of Embedded Computing Applications
Embedded computing is in many ways much more demanding than the sort of
programs that you may have written for PCs or workstations. Functionality is

1.1 Complex Systems and Microprocessors 5

important in both general-purpose computing and embedded computing, but
embedded applications must meet many other constraints as well.

On the one hand, embedded computing systems have to provide sophisticated
functionality:

■ Complex algorithms: The operations performed by the microprocessor may
be very sophisticated. For example, the microprocessor that controls an
automobile engine must perform complicated filtering functions to opti-
mize the performance of the car while minimizing pollution and fuel
utilization.

■ User interface: Microprocessors are frequently used to control complex user
interfaces that may include multiple menus and many options. The moving
maps in Global Positioning System (GPS) navigation are good examples of
sophisticated user interfaces.

To make things more difficult, embedded computing operations must often be
performed to meet deadlines:

■ Real time: Many embedded computing systems have to perform in real time—
if the data is not ready by a certain deadline, the system breaks. In some cases,
failure to meet a deadline is unsafe and can even endanger lives. In other cases,
missing a deadline does not create safety problems but does create unhappy
customers—missed deadlines in printers,for example,can result in scrambled
pages.

■ Multirate: Not only must operations be completed by deadlines, but many
embedded computing systems have several real-time activities going on at
the same time. They may simultaneously control some operations that run
at slow rates and others that run at high rates. Multimedia applications are
prime examples of multirate behavior. The audio and video portions of a
multimedia stream run at very different rates, but they must remain closely
synchronized. Failure to meet a deadline on either the audio or video portions
spoils the perception of the entire presentation.

Costs of various sorts are also very important:

■ Manufacturing cost: The total cost of building the system is very important in
many cases. Manufacturing cost is determined by many factors, including the
type of microprocessor used, the amount of memory required, and the types
of I/O devices.

■ Power and energy: Power consumption directly affects the cost of the
hardware, since a larger power supply may be necessary. Energy con-
sumption affects battery life, which is important in many applications,
as well as heat consumption, which can be important even in desktop
applications.

6 CHAPTER 1 Embedded Computing

Finally, most embedded computing systems are designed by small teams on
tight deadlines. The use of small design teams for microprocessor-based systems
is a self-fulfilling prophecy—the fact that systems can be built with microproces-
sors by only a few people invariably encourages management to assume that all
microprocessor-based systems can be built by small teams.Tight deadlines are facts
of life in today’s internationally competitive environment. However,building a prod-
uct using embedded software makes a lot of sense: Hardware and software can be
debugged somewhat independently and design revisions can be made much more
quickly.

1.1.3 Why Use Microprocessors?
There are many ways to design a digital system: custom logic, field-programmable
gate arrays (FPGAs), and so on. Why use microprocessors? There are two answers:

■ Microprocessors are a very efficient way to implement digital systems.

■ Microprocessors make it easier to design families of products that can be built
to provide various feature sets at different price points and can be extended
to provide new features to keep up with rapidly changing markets.

The paradox of digital design is that using a predesigned instruction set processor
may in fact result in faster implementation of your application than designing your
own custom logic. It is tempting to think that the overhead of fetching, decoding,
and executing instructions is so high that it cannot be recouped.

But there are two factors that work together to make microprocessor-based
designs fast. First,microprocessors execute programs very efficiently. Modern RISC
processors can execute one instruction per clock cycle most of the time, and high-
performance processors can execute several instructions per cycle. While there is
overhead that must be paid for interpreting instructions, it can often be hidden by
clever utilization of parallelism within the CPU.

Second, microprocessor manufacturers spend a great deal of money to make
their CPUs run very fast. They hire large teams of designers to tweak every aspect
of the microprocessor to make it run at the highest possible speed. Few products
can justify the dozens or hundreds of computer architects and VLSI designers cus-
tomarily employed in the design of a single microprocessor;chips designed by small
design teams are less likely to be as highly optimized for speed (or power) as are
microprocessors.They also utilize the latest manufacturing technology. Just the use
of the latest generation of VLSI fabrication technology, rather than one-generation-
old technology, can make a huge difference in performance. Microprocessors gen-
erally dominate new fabrication lines because they can be manufactured in large
volume and are guaranteed to command high prices. Customers who wish to fab-
ricate their own logic must often wait to make use of VLSI technology from the
latest generation of microprocessors. Thus, even if logic you design avoids all the
overhead of executing instructions,the fact that it is built from slower circuits often
means that its performance advantage is small and perhaps nonexistent.

1.1 Complex Systems and Microprocessors 7

It is also surprising but true that microprocessors are very efficient utilizers
of logic. The generality of a microprocessor and the need for a separate memory
may suggest that microprocessor-based designs are inherently much larger than
custom logic designs. However, in many cases the microprocessor is smaller when
size is measured in units of logic gates. When special-purpose logic is designed
for a particular function, it cannot be used for other functions. A microprocessor,
on the other hand, can be used for many different algorithms simply by changing
the program it executes. Since so many modern systems make use of complex
algorithms and user interfaces, we would generally have to design many different
custom logic blocks to implement all the required functionality. Many of those blocks
will often sit idle—for example,the processing logic may sit idle when user interface
functions are performed. Implementing several functions on a single processor often
makes much better use of the available hardware budget.

Given the small or nonexistent gains that can be had by avoiding the use of micro-
processors, the fact that microprocessors provide substantial advantages makes
them the best choice in a wide variety of systems. The programmability of micro-
processors can be a substantial benefit during the design process. It allows program
design to be separated (at least to some extent) from design of the hardware on
which programs will be run. While one team is designing the board that contains
the microprocessor,I/O devices,memory,and so on,others can be writing programs
at the same time. Equally important,programmability makes it easier to design fam-
ilies of products. In many cases,high-end products can be created simply by adding
code without changing the hardware. This practice substantially reduces manufac-
turing costs. Even when hardware must be redesigned for next-generation products,
it may be possible to reuse software, reducing development time and cost.

Why not use PCs for all embedded computing? Put another way, how many
different hardware platforms do we need for embedded computing systems? PCs
are widely used and provide a very flexible programming environment. Components
of PCs are, in fact, used in many embedded computing systems. But several factors
keep us from using the stock PC as the universal embedded computing platform.

First, real-time performance requirements often drive us to different architec-
tures. As we will see later in the book, real-time performance is often best achieved
by multiprocessors.

Second, low power and low cost also drive us away from PC architectures and
toward multiprocessors. Personal computers are designed to satisfy a broad mix
of computing requirements and to be very flexible. Those features increase the
complexity and price of the components. They also cause the processor and other
components to use more energy to perform a given function. Custom embedded
systems that are designed for an application,such as a cell phone,burn several orders
of magnitude less power than do PCs with equivalent computational performance,
and they are considerably less expensive as well.

The cell phone may, in fact, be the next computing platform. Since over one
billion cell phones are sold each year, a great deal of effort is put into designing
them. Cell phones operate on batteries, so they must be very power efficient.They

8 CHAPTER 1 Embedded Computing

must also perform huge amounts of computation in real time. Not only are cell
phones taking over some PC-oriented tasks, such as e-mail and Web browsing, but
the components of the cell phone can also be used to build non-cell-phone systems
that are very energy efficient for certain classes of applications.

1.1.4 The Physics of Software
Computing is a physical act.Although PCs have trained us to think about computers
as purveyors of abstract information, those computers in fact do their work by
moving electrons and doing work. This is the fundamental reason why programs
take time to finish, why they consume energy, etc.

A prime subject of this book is what we might think of as the physics of
software. Software performance and energy consumption are very important prop-
erties when we are connecting our embedded computers to the real world.We need
to understand the sources of performance and power consumption if we are to be
able to design programs that meet our application’s goals. Luckily,we don’t have to
optimize our programs by pushing around electrons. In many cases, we can make
very high-level decisions about the structure of our programs to greatly improve
their real-time performance and power consumption.As much as possible,we want
to make computing abstractions work for us as we work on the physics of our
software systems.

1.1.5 Challenges in Embedded Computing System Design
External constraints are one important source of difficulty in embedded system
design. Let’s consider some important problems that must be taken into account in
embedded system design.

How much hardware do we need?
We have a great deal of control over the amount of computing power we apply
to our problem. We cannot only select the type of microprocessor used, but also
select the amount of memory,the peripheral devices,and more. Since we often must
meet both performance deadlines and manufacturing cost constraints,the choice of
hardware is important—too little hardware and the system fails to meet its deadlines,
too much hardware and it becomes too expensive.

How do we meet deadlines?
The brute force way of meeting a deadline is to speed up the hardware so that
the program runs faster. Of course, that makes the system more expensive. It is also
entirely possible that increasing the CPU clock rate may not make enough difference
to execution time,since the program’s speed may be limited by the memory system.

How do we minimize power consumption?
In battery-powered applications,power consumption is extremely important. Even
in nonbattery applications, excessive power consumption can increase heat dis-
sipation. One way to make a digital system consume less power is to make it

1.1 Complex Systems and Microprocessors 9

run more slowly, but naively slowing down the system can obviously lead to
missed deadlines. Careful design is required to slow down the noncritical parts
of the machine for power consumption while still meeting necessary performance
goals.

How do we design for upgradability?
The hardware platform may be used over several product generations,or for several
different versions of a product in the same generation, with few or no changes.
However, we want to be able to add features by changing software. How can we
design a machine that will provide the required performance for software that we
haven’t yet written?

Does it really work?
Reliability is always important when selling products—customers rightly expect
that products they buy will work. Reliability is especially important in some appli-
cations, such as safety-critical systems. If we wait until we have a running system
and try to eliminate the bugs, we will be too late—we won’t find enough bugs, it
will be too expensive to fix them, and it will take too long as well. Another set of
challenges comes from the characteristics of the components and systems them-
selves. If workstation programming is like assembling a machine on a bench, then
embedded system design is often more like working on a car—cramped, delicate,
and difficult. Let’s consider some ways in which the nature of embedded computing
machines makes their design more difficult.

■ Complex testing: Exercising an embedded system is generally more difficult
than typing in some data. We may have to run a real machine in order to
generate the proper data. The timing of data is often important, meaning that
we cannot separate the testing of an embedded computer from the machine
in which it is embedded.

■ Limited observability and controllability: Embedded computing systems
usually do not come with keyboards and screens.This makes it more difficult to
see what is going on and to affect the system’s operation.We may be forced to
watch the values of electrical signals on the microprocessor bus, for example,
to know what is going on inside the system. Moreover, in real-time applica-
tions we may not be able to easily stop the system to see what is going on
inside.

■ Restricted development environments: The development environments for
embedded systems (the tools used to develop software and hardware) are
often much more limited than those available for PCs and workstations. We
generally compile code on one type of machine, such as a PC, and download
it onto the embedded system.To debug the code,we must usually rely on pro-
grams that run on the PC or workstation and then look inside the embedded
system.

10 CHAPTER 1 Embedded Computing

1.1.6 Performance in Embedded Computing
When we talk about performance when writing programs for our PC, what do
we really mean? Most programmers have a fairly vague notion of performance—
they want their program to run “fast enough” and they may be worried about
the asympototic complexity of their program. Most general-purpose programmers
use no tools that are designed to help them improve the performance of their
programs.

Embedded system designers, in contrast, have a very clear performance goal in
mind—their program must meet its deadline.At the heart of embedded computing
is real-time computing,which is the science and art of programming to deadlines.
The program receives its input data;the deadline is the time at which a computation
must be finished. If the program does not produce the required output by the
deadline, then the program does not work, even if the output that it eventually
produces is functionally correct.

This notion of deadline-driven programming is at once simple and demanding.
It is not easy to determine whether a large, complex program running on a sophis-
ticated microprocessor will meet its deadline. We need tools to help us analyze the
real-time performance of embedded systems; we also need to adopt programming
disciplines and styles that make it possible to analyze these programs.

In order to understand the real-time behavior of an embedded computing system,
we have to analyze the system at several different levels of abstraction. As we move
through this book, we will work our way up from the lowest layers that describe
components of the system up through the highest layers that describe the complete
system. Those layers include:

■ CPU: The CPU clearly influences the behavior of the program, particularly
when the CPU is a pipelined processor with a cache.

■ Platform: The platform includes the bus and I/O devices. The platform com-
ponents that surround the CPU are responsible for feeding the CPU and can
dramatically affect its performance.

■ Program: Programs are very large and the CPU sees only a small window of
the program at a time. We must consider the structure of the entire program
to determine its overall behavior.

■ Task: We generally run several programs simultaneously on a CPU, creating a
multitasking system. The tasks interact with each other in ways that have
profound implications for performance.

■ Multiprocessor: Many embedded systems have more than one processor—
they may include multiple programmable CPUs as well as accelerators. Once
again, the interaction between these processors adds yet more complexity to
the analysis of overall system performance.

1.2 The Embedded System Design Process 11

1.2 THE EMBEDDED SYSTEM DESIGN PROCESS
This section provides an overview of the embedded system design process aimed at
two objectives. First,it will give us an introduction to the various steps in embedded
system design before we delve into them in more detail. Second, it will allow us to
consider the design methodology itself. A design methodology is important for
three reasons. First, it allows us to keep a scorecard on a design to ensure that we
have done everything we need to do,such as optimizing performance or perform-
ing functional tests. Second, it allows us to develop computer-aided design tools.
Developing a single program that takes in a concept for an embedded system and
emits a completed design would be a daunting task,but by first breaking the process
into manageable steps,we can work on automating (or at least semiautomating) the
steps one at a time.Third,a design methodology makes it much easier for members
of a design team to communicate. By defining the overall process, team members
can more easily understand what they are supposed to do,what they should receive
from other team members at certain times, and what they are to hand off when
they complete their assigned steps. Since most embedded systems are designed
by teams, coordination is perhaps the most important role of a well-defined design
methodology.

Figure 1.1 summarizes the major steps in the embedded system design process.
In this top–down view, we start with the system requirements. In the next step,

System integration

Components

Architecture

Specification

Requirements

Bottom-up
design

Top-down
design

FIGURE 1.1

Major levels of abstraction in the design process.

12 CHAPTER 1 Embedded Computing

specification, we create a more detailed description of what we want. But the
specification states only how the system behaves, not how it is built. The details
of the system’s internals begin to take shape when we develop the architecture,
which gives the system structure in terms of large components. Once we know the
components we need, we can design those components, including both software
modules and any specialized hardware we need. Based on those components, we
can finally build a complete system.

In this section we will consider design from the top–down—we will begin with
the most abstract description of the system and conclude with concrete details.
The alternative is a bottom–up view in which we start with components to build a
system. Bottom–up design steps are shown in the figure as dashed-line arrows. We
need bottom–up design because we do not have perfect insight into how later stages
of the design process will turn out. Decisions at one stage of design are based upon
estimates of what will happen later:How fast can we make a particular function run?
How much memory will we need? How much system bus capacity do we need?
If our estimates are inadequate, we may have to backtrack and amend our original
decisions to take the new facts into account. In general, the less experience we
have with the design of similar systems,the more we will have to rely on bottom-up
design information to help us refine the system.

But the steps in the design process are only one axis along which we can view
embedded system design. We also need to consider the major goals of the design:

■ manufacturing cost;

■ performance (both overall speed and deadlines); and

■ power consumption.

We must also consider the tasks we need to perform at every step in the design
process. At each step in the design, we add detail:

■ We must analyze the design at each step to determine how we can meet the
specifications.

■ We must then refine the design to add detail.

■ And we must verify the design to ensure that it still meets all system goals,
such as cost, speed, and so on.

1.2.1 Requirements
Clearly, before we design a system, we must know what we are designing. The
initial stages of the design process capture this information for use in creating the
architecture and components. We generally proceed in two phases:First,we gather
an informal description from the customers known as requirements, and we refine
the requirements into a specification that contains enough information to begin
designing the system architecture.

1.2 The Embedded System Design Process 13

Separating out requirements analysis and specification is often necessary because
of the large gap between what the customers can describe about the system they
want and what the architects need to design the system. Consumers of embedded
systems are usually not themselves embedded system designers or even product
designers. Their understanding of the system is based on how they envision users’
interactions with the system. They may have unrealistic expectations as to what
can be done within their budgets; and they may also express their desires in a
language very different from system architects’ jargon. Capturing a consistent set
of requirements from the customer and then massaging those requirements into a
more formal specification is a structured way to manage the process of translating
from the consumer’s language to the designer’s.

Requirements may be functional or nonfunctional .We must of course capture
the basic functions of the embedded system,but functional description is often not
sufficient. Typical nonfunctional requirements include:

■ Performance: The speed of the system is often a major consideration both for
the usability of the system and for its ultimate cost. As we have noted, perfor-
mance may be a combination of soft performance metrics such as approximate
time to perform a user-level function and hard deadlines by which a particular
operation must be completed.

■ Cost: The target cost or purchase price for the system is almost always a
consideration. Cost typically has two major components: manufacturing
cost includes the cost of components and assembly; nonrecurring engi-
neering (NRE) costs include the personnel and other costs of designing the
system.

■ Physical size and weight: The physical aspects of the final system can vary
greatly depending upon the application. An industrial control system for an
assembly line may be designed to fit into a standard-size rack with no strict
limitations on weight. A handheld device typically has tight requirements on
both size and weight that can ripple through the entire system design.

■ Power consumption: Power, of course, is important in battery-powered
systems and is often important in other applications as well. Power can be
specified in the requirements stage in terms of battery life—the customer is
unlikely to be able to describe the allowable wattage.

Validating a set of requirements is ultimately a psychological task since it requires
understanding both what people want and how they communicate those needs.
One good way to refine at least the user interface portion of a system’s requirements
is to build a mock-up. The mock-up may use canned data to simulate functionality
in a restricted demonstration, and it may be executed on a PC or a workstation.
But it should give the customer a good idea of how the system will be used and
how the user can react to it. Physical,nonfunctional models of devices can also give
customers a better idea of characteristics such as size and weight.

14 CHAPTER 1 Embedded Computing

Name

Purpose

Inputs

Outputs

Functions

Performance

Manufacturing cost

Power

Physical size and weight

FIGURE 1.2

Sample requirements form.

Requirements analysis for big systems can be complex and time consuming.
However, capturing a relatively small amount of information in a clear, simple for-
mat is a good start toward understanding system requirements. To introduce the
discipline of requirements analysis as part of system design, we will use a simple
requirements methodology.

Figure 1.2 shows a sample requirements form that can be filled out at the
start of the project. We can use the form as a checklist in considering the basic
characteristics of the system. Let’s consider the entries in the form:

■ Name: This is simple but helpful. Giving a name to the project not only sim-
plifies talking about it to other people but can also crystallize the purpose of
the machine.

■ Purpose: This should be a brief one- or two-line description of what the system
is supposed to do. If you can’t describe the essence of your system in one or
two lines, chances are that you don’t understand it well enough.

■ Inputs and outputs: These two entries are more complex than they seem.The
inputs and outputs to the system encompass a wealth of detail:

— Types of data: Analog electronic signals? Digital data? Mechanical inputs?

— Data characteristics: Periodically arriving data, such as digital audio
samples? Occasional user inputs? How many bits per data element?

— Types of I/O devices: Buttons? Analog/digital converters? Video displays?

■ Functions: This is a more detailed description of what the system does.
A good way to approach this is to work from the inputs to the outputs: When
the system receives an input, what does it do? How do user interface inputs
affect these functions? How do different functions interact?

1.2 The Embedded System Design Process 15

■ Performance: Many embedded computing systems spend at least some time
controlling physical devices or processing data coming from the physical world.
In most of these cases, the computations must be performed within a certain
time frame. It is essential that the performance requirements be identified early
since they must be carefully measured during implementation to ensure that
the system works properly.

■ Manufacturing cost: This includes primarily the cost of the hardware compo-
nents. Even if you don’t know exactly how much you can afford to spend on
system components, you should have some idea of the eventual cost range.
Cost has a substantial influence on architecture: A machine that is meant to
sell at $10 most likely has a very different internal structure than a $100
system.

■ Power: Similarly, you may have only a rough idea of how much power the
system can consume, but a little information can go a long way. Typically, the
most important decision is whether the machine will be battery powered or
plugged into the wall. Battery-powered machines must be much more careful
about how they spend energy.

■ Physical size and weight: You should give some indication of the physical size
of the system to help guide certain architectural decisions. A desktop machine
has much more flexibility in the components used than, for example, a lapel-
mounted voice recorder.

A more thorough requirements analysis for a large system might use a form
similar to Figure 1.2 as a summary of the longer requirements document. After an
introductory section containing this form, a longer requirements document could
include details on each of the items mentioned in the introduction. For example,
each individual feature described in the introduction in a single sentence may be
described in detail in a section of the specification.

After writing the requirements, you should check them for internal consistency:
Did you forget to assign a function to an input or output? Did you consider all
the modes in which you want the system to operate? Did you place an unrealistic
number of features into a battery-powered, low-cost machine?

To practice the capture of system requirements, Example 1.1 creates the
requirements for a GPS moving map system.

Example 1.1

Requirements analysis of a GPS moving map
The moving map is a handheld device that displays for the user a map of the terrain around the
user’s current position; the map display changes as the user and the map device change posi-
tion. The moving map obtains its position from the GPS, a satellite-based navigation system.
The moving map display might look something like the following figure.

16 CHAPTER 1 Embedded Computing

User’s lat/long position

User’s current
position

I-78

lat: 40 13 long: 32 19

Sc
o

tc
h

 R
o

ad

What requirements might we have for our GPS moving map? Here is an initial list:

■ Functionality: This system is designed for highway driving and similar uses, not
nautical or aviation uses that require more specialized databases and functions. The
system should show major roads and other landmarks available in standard topographic
databases.

■ User interface: The screen should have at least 400 � 600 pixel resolution. The device
should be controlled by no more than three buttons. A menu system should pop up on
the screen when buttons are pressed to allow the user to make selections to control the
system.

■ Performance: The map should scroll smoothly. Upon power-up, a display should take
no more than one second to appear, and the system should be able to verify its position
and display the current map within 15 s.

■ Cost: The selling cost (street price) of the unit should be no more than $100.

■ Physical size and weight: The device should fit comfortably in the palm of the hand.

■ Power consumption: The device should run for at least eight hours on four AA
batteries.

Note that many of these requirements are not specified in engineering units—for example,
physical size is measured relative to a hand, not in centimeters. Although these requirements
must ultimately be translated into something that can be used by the designers, keeping a
record of what the customer wants can help to resolve questions about the specification that
may crop up later during design.

Based on this discussion, let’s write a requirements chart for our moving map system:

1.2 The Embedded System Design Process 17

Name GPS moving map
Purpose Consumer-grade moving map for driving use
Inputs Power button, two control buttons
Outputs Back-lit LCD display 400 � 600
Functions Uses 5-receiver GPS system; three user-selectable resolu-

tions; always displays current latitude and longitude
Performance Updates screen within 0.25 seconds upon movement
Manufacturing cost $30
Power 100 mW
Physical size and weight No more than 2” � 6, ” 12 ounces

This chart adds some requirements in engineering terms that will be of use to the designers.
For example, it provides actual dimensions of the device. The manufacturing cost was derived
from the selling price by using a simple rule of thumb: The selling price is four to five times
the cost of goods sold (the total of all the component costs).

1.2.2 Specification
The specification is more precise—it serves as the contract between the customer
and the architects. As such, the specification must be carefully written so that it
accurately reflects the customer’s requirements and does so in a way that can be
clearly followed during design.

Specification is probably the least familiar phase of this methodology for neo-
phyte designers, but it is essential to creating working systems with a minimum of
designer effort. Designers who lack a clear idea of what they want to build when
they begin typically make faulty assumptions early in the process that aren’t obvi-
ous until they have a working system. At that point, the only solution is to take the
machine apart, throw away some of it, and start again. Not only does this take a lot
of extra time, the resulting system is also very likely to be inelegant, kludgey, and
bug-ridden.

The specification should be understandable enough so that someone can
verify that it meets system requirements and overall expectations of the customer. It
should also be unambiguous enough that designers know what they need to build.
Designers can run into several different types of problems caused by unclear spec-
ifications. If the behavior of some feature in a particular situation is unclear from
the specification, the designer may implement the wrong functionality. If global
characteristics of the specification are wrong or incomplete, the overall system
architecture derived from the specification may be inadequate to meet the needs of
implementation.

A specification of the GPS system would include several components:

■ Data received from the GPS satellite constellation.

■ Map data.

18 CHAPTER 1 Embedded Computing

■ User interface.

■ Operations that must be performed to satisfy customer requests.

■ Background actions required to keep the system running, such as operating
the GPS receiver.

UML, a language for describing specifications, will be introduced in Section 1.3,
and we will use it to write a specification in Section 1.4. We will practice writing
specifications in each chapter as we work through example system designs.We will
also study specification techniques in more detail in Chapter 9.

1.2.3 Architecture Design
The specification does not say how the system does things, only what the system
does. Describing how the system implements those functions is the purpose of the
architecture. The architecture is a plan for the overall structure of the system that
will be used later to design the components that make up the architecture. The
creation of the architecture is the first phase of what many designers think of as
design.

To understand what an architectural description is, let’s look at a sample archi-
tecture for the moving map of Example 1.1. Figure 1.3 shows a sample system
architecture in the form of a block diagram that shows major operations and data
flows among them.

This block diagram is still quite abstract—we have not yet specified which oper-
ations will be performed by software running on a CPU, what will be done by
special-purpose hardware, and so on. The diagram does, however, go a long way
toward describing how to implement the functions described in the specification.
We clearly see, for example, that we need to search the topographic database and
to render (i.e., draw) the results for the display. We have chosen to separate those
functions so that we can potentially do them in parallel—performing rendering
separately from searching the database may help us update the screen more fluidly.

Display
GPS
receiver

Renderer

Database User interface

Search
engine

FIGURE 1.3

Block diagram for the moving map.

1.2 The Embedded System Design Process 19

Only after we have designed an initial architecture that is not biased toward
too many implementation details should we refine that system block diagram into
two block diagrams: one for hardware and another for software. These two more
refined block diagrams are shown in Figure 1.4.The hardware block diagram clearly
shows that we have one central CPU surrounded by memory and I/O devices. In
particular, we have chosen to use two memories: a frame buffer for the pixels to
be displayed and a separate program/data memory for general use by the CPU. The
software block diagram fairly closely follows the system block diagram,but we have
added a timer to control when we read the buttons on the user interface and render
data onto the screen.To have a truly complete architectural description,we require
more detail, such as where units in the software block diagram will be executed in
the hardware block diagram and when operations will be performed in time.

Architectural descriptions must be designed to satisfy both functional and non-
functional requirements. Not only must all the required functions be present, but
we must meet cost, speed,power, and other nonfunctional constraints. Starting out
with a system architecture and refining that to hardware and software architectures

Display

Renderer

Position

Hardware

Bus

Software

Timer

CPU

GPS receiver

User
interface

Memory

Frame
buffer

Panel I/O

Database
search

Pixels

FIGURE 1.4

Hardware and software architectures for the moving map.

20 CHAPTER 1 Embedded Computing

is one good way to ensure that we meet all specifications: We can concentrate on the
functional elements in the system block diagram, and then consider the nonfunc-
tional constraints when creating the hardware and software architectures.

How do we know that our hardware and software architectures in fact meet
constraints on speed, cost, and so on? We must somehow be able to estimate the
properties of the components of the block diagrams,such as the search and render-
ing functions in the moving map system. Accurate estimation derives in part from
experience, both general design experience and particular experience with simi-
lar systems. However, we can sometimes create simplified models to help us make
more accurate estimates. Sound estimates of all nonfunctional constraints during
the architecture phase are crucial, since decisions based on bad data will show
up during the final phases of design, indicating that we did not, in fact, meet the
specification.

1.2.4 Designing Hardware and Software Components
The architectural description tells us what components we need. The component
design effort builds those components in conformance to the architecture and spec-
ification. The components will in general include both hardware—FPGAs, boards,
and so on—and software modules.

Some of the components will be ready-made. The CPU, for example, will be a
standard component in almost all cases,as will memory chips and many other com-
ponents. In the moving map, the GPS receiver is a good example of a specialized
component that will nonetheless be a predesigned, standard component. We can
also make use of standard software modules. One good example is the topographic
database. Standard topographic databases exist, and you probably want to use stan-
dard routines to access the database—not only is the data in a predefined format,
but it is highly compressed to save storage. Using standard software for these access
functions not only saves us design time, but it may give us a faster implementation
for specialized functions such as the data decompression phase.

You will have to design some components yourself. Even if you are using only
standard integrated circuits, you may have to design the printed circuit board that
connects them. You will probably have to do a lot of custom programming as well.
When creating these embedded software modules, you must of course make use
of your expertise to ensure that the system runs properly in real time and that it
does not take up more memory space than is allowed. The power consumption
of the moving map software example is particularly important. You may need to
be very careful about how you read and write memory to minimize power—for
example,since memory accesses are a major source of power consumption,memory
transactions must be carefully planned to avoid reading the same data several times.

1.2.5 System Integration
Only after the components are built do we have the satisfaction of putting them
together and seeing a working system. Of course, this phase usually consists of

1.3 Formalisms for System Design 21

a lot more than just plugging everything together and standing back. Bugs are
typically found during system integration, and good planning can help us find the
bugs quickly. By building up the system in phases and running properly chosen
tests, we can often find bugs more easily. If we debug only a few modules at a time,
we are more likely to uncover the simple bugs and able to easily recognize them.
Only by fixing the simple bugs early will we be able to uncover the more complex
or obscure bugs that can be identified only by giving the system a hard workout.We
need to ensure during the architectural and component design phases that we make
it as easy as possible to assemble the system in phases and test functions relatively
independently.

System integration is difficult because it usually uncovers problems. It is often
hard to observe the system in sufficient detail to determine exactly what is wrong—
the debugging facilities for embedded systems are usually much more limited than
what you would find on desktop systems. As a result, determining why things do
not stet work correctly and how they can be fixed is a challenge in itself. Careful
attention to inserting appropriate debugging facilities during design can help ease
system integration problems, but the nature of embedded computing means that
this phase will always be a challenge.

1.3 FORMALISMS FOR SYSTEM DESIGN
As mentioned in the last section, we perform a number of different design tasks
at different levels of abstraction throughout this book: creating requirements and
specifications,architecting the system,designing code,and designing tests. It is often
helpful to conceptualize these tasks in diagrams. Luckily, there is a visual language
that can be used to capture all these design tasks:the Unified Modeling Language
(UML) [Boo99,Pil05]. UML was designed to be useful at many levels of abstraction
in the design process. UML is useful because it encourages design by successive
refinement and progressively adding detail to the design, rather than rethinking the
design at each new level of abstraction.

UML is an object-oriented modeling language. We will see precisely what we
mean by an object in just a moment, but object-oriented design emphasizes two
concepts of importance:

■ It encourages the design to be described as a number of interacting objects,
rather than a few large monolithic blocks of code.

■ At least some of those objects will correspond to real pieces of software or
hardware in the system. We can also use UML to model the outside world
that interacts with our system, in which case the objects may correspond to
people or other machines. It is sometimes important to implement something
we think of at a high level as a single object using several distinct pieces of code
or to otherwise break up the object correspondence in the implementation.

22 CHAPTER 1 Embedded Computing

However,thinking of the design in terms of actual objects helps us understand
the natural structure of the system.

Object-oriented (often abbreviated OO) specification can be seen in two
complementary ways:

■ Object-oriented specification allows a system to be described in a way that
closely models real-world objects and their interactions.

■ Object-oriented specification provides a basic set of primitives that can
be used to describe systems with particular attributes, irrespective of the
relationships of those systems’ components to real-world objects.

Both views are useful. At a minimum, object-oriented specification is a set of
linguistic mechanisms. In many cases, it is useful to describe a system in terms
of real-world analogs. However, performance, cost, and so on may dictate that we
change the specification to be different in some ways from the real-world elements
we are trying to model and implement. In this case,the object-oriented specification
mechanisms are still useful.

What is the relationship between an object-oriented specification and an object-
oriented programming language (such as C++ [Str97])? A specification language
may not be executable. But both object-oriented specification and programming
languages provide similar basic methods for structuring large systems.

Unified Modeling Language (UML)—the acronym is the name is a large lan-
guage, and covering all of it is beyond the scope of this book. In this section, we
introduce only a few basic concepts. In later chapters, as we need a few more
UML concepts,we introduce them to the basic modeling elements introduced here.
Because UML is so rich, there are many graphical elements in a UML diagram. It
is important to be careful to use the correct drawing to describe something—for
instance, UML distinguishes between arrows with open and filled-in arrowheads,
and solid and broken lines. As you become more familiar with the language,uses of
the graphical primitives will become more natural to you.

We also won’t take a strict object-oriented approach. We may not always use
objects for certain elements of a design—in some cases,such as when taking partic-
ular aspects of the implementation into account, it may make sense to use another
design style. However, object-oriented design is widely applicable, and no designer
can consider himself or herself design literate without understanding it.

1.3.1 Structural Description
By structural description,we mean the basic components of the system;we will
learn how to describe how these components act in the next section.The principal
component of an object-oriented design is, naturally enough, the object . An object
includes a set of attributes that define its internal state. When implemented in
a programming language, these attributes usually become variables or constants
held in a data structure. In some cases, we will add the type of the attribute after

1.3 Formalisms for System Design 23

the attribute name for clarity, but we do not always have to specify a type for an
attribute. An object describing a display (such as a CRT screen) is shown in UML
notation in Figure 1.5. The text in the folded-corner page icon is a note; it does not
correspond to an object in the system and only serves as a comment. The attribute
is, in this case, an array of pixels that holds the contents of the display. The object
is identified in two ways: It has a unique name, and it is a member of a class. The
name is underlined to show that this is a description of an object and not of a class.

A class is a form of type definition—all objects derived from the same class have
the same characteristics, although their attributes may have different values. A class
defines the attributes that an object may have. It also defines the operations that
determine how the object interacts with the rest of the world. In a programming
language, the operations would become pieces of code used to manipulate the
object. The UML description of the Display class is shown in Figure 1.6. The class
has the name that we saw used in the d1 object since d1 is an instance of class
Display.The Display class defines the pixels attribute seen in the object; remember
that when we instantiate the class an object, that object will have its own memory
so that different objects of the same class have their own values for the attributes.
Other classes can examine and modify class attributes; if we have to do something
more complex than use the attribute directly, we define a behavior to perform that
function.

Pixels is
a 2-D array

Object name: class name

Attributespixels: array[] of pixels
elements
menu_items

d1: Display

FIGURE 1.5

An object in UML notation.

Pixels is
a 2-D array

Display

pixels
elements
menu_items

mouse_click()
draw_box()

Class name

Attributes

Operations

FIGURE 1.6

A class in UML notation.

24 CHAPTER 1 Embedded Computing

A class defines both the interface for a particular type of object and that
object’s implementation. When we use an object, we do not directly manipulate
its attributes—we can only read or modify the object’s state through the opera-
tions that define the interface to the object. (The implementation includes both
the attributes and whatever code is used to implement the operations.) As long as
we do not change the behavior of the object seen at the interface, we can change
the implementation as much as we want. This lets us improve the system by, for
example, speeding up an operation or reducing the amount of memory required
without requiring changes to anything else that uses the object.

Clearly, the choice of an interface is a very important decision in object-oriented
design. The proper interface must provide ways to access the object’s state (since
we cannot directly see the attributes) as well as ways to update the state. We need
to make the object’s interface general enough so that we can make full use of
its capabilities. However, excessive generality often makes the object large and
slow. Big,complex interfaces also make the class definition difficult for designers to
understand and use properly.

There are several types of relationships that can exist between objects and
classes:

■ Association occurs between objects that communicate with each other but
have no ownership relationship between them.

■ Aggregation describes a complex object made of smaller objects.

■ Composition is a type of aggregation in which the owner does not allow
access to the component objects.

■ Generalization allows us to define one class in terms of another.

The elements of a UML class or object do not necessarily directly correspond to
statements in a programming language—if the UML is intended to describe some-
thing more abstract than a program, there may be a significant gap between the
contents of the UML and a program implementing it.The attributes of an object do
not necessarily reflect variables in the object.An attribute is some value that reflects
the current state of the object. In the program implementation, that value could be
computed from some other internal variables.The behaviors of the object would,in
a higher-level specification,reflect the basic things that can be done with an object.
Implementing all these features may require breaking up a behavior into several
smaller behaviors—for example, initialize the object before you start to change its
internal state-derived classes.

Unified Modeling Language, like most object-oriented languages, allows us to
define one class in terms of another. An example is shown in Figure 1.7, where we
derive two particular types of displays. The first, BW_display, describes a black-
and-white display.This does not require us to add new attributes or operations,but
we can specialize both to work on one-bit pixels. The second,Color_map_display,
uses a graphic device known as a color map to allow the user to select from a

1.3 Formalisms for System Design 25

Display

pixels
objects
menu_items

pixel()
set_pixel()
mouse_click()
draw_box()

Base class

Generalization

Color_map_display

color_map

BW_display

Derived classes

FIGURE 1.7

Derived classes as a form of generalization in UML.

large number of available colors even with a small number of bits per pixel. This
class defines a color_map attribute that determines how pixel values are mapped
onto display colors. A derived class inherits all the attributes and operations from
its base class. In this class, Display is the base class for the two derived classes.
A derived class is defined to include all the attributes of its base class. This relation
is transitive—if Display were derived from another class, both BW_display and
Color_map_display would inherit all the attributes and operations of Display’s
base class as well. Inheritance has two purposes. It of course allows us to succinctly
describe one class that shares some characteristics with another class. Even more
important, it captures those relationships between classes and documents them. If
we ever need to change any of the classes, knowledge of the class structure helps
us determine the reach of changes—for example, should the change affect only
Color_map_display objects or should it change all Display objects?

Unified Modeling Language considers inheritance to be one form of general-
ization.A generalization relationship is shown in a UML diagram as an arrow with an
open (unfilled) arrowhead. Both BW_display and Color_map_display are specific

26 CHAPTER 1 Embedded Computing

Speaker Display

Multimedia_display

Base class

Derived class

FIGURE 1.8

Multiple inheritance in UML.

versions of Display, so Display generalizes both of them. UML also allows us to
define multiple inheritance, in which a class is derived from more than one base
class. (Most object-oriented programming languages support multiple inheritance
as well.) An example of multiple inheritance is shown in Figure 1.8; we have omit-
ted the details of the classes’ attributes and operations for simplicity. In this case,
we have created a Multimedia_display class by combining the Display class with a
Speaker class for sound. The derived class inherits all the attributes and operations
of both its base classes, Display and Speaker. Because multiple inheritance causes
the sizes of the attribute set and operations to expand so quickly, it should be used
with care.

A link describes a relationship between objects; association is to link as class is
to object. We need links because objects often do not stand alone; associations let
us capture type information about these links. Figure 1.9 shows examples of links
and an association. When we consider the actual objects in the system, there is a
set of messages that keeps track of the current number of active messages (two in
this example) and points to the active messages. In this case, the link defines the
contains relation. When generalized into classes,we define an association between
the message set class and the message class. The association is drawn as a line
between the two labeled with the name of the association, namely, contains. The
ball and the number at the message class end indicate that the message set may
include zero or more message objects. Sometimes we may want to attach data to
the links themselves; we can specify this in the association by attaching a class-like
box to the association’s edge, which holds the association’s data.

Typically, we find that we use a certain combination of elements in an object or
class many times. We can give these patterns names, which are called stereotypes

1.3 Formalisms for System Design 27

count 5 2

Links between objects

Association between classes

count: integer

message setcontains

0..* 1

msg 5 msg1
length 5 1102

msg 5 msg2
length 5 2114

message

msg: ADPCM_stream
length: integer

message

message

message set

set1: message set

msg1: message

msg2: message

FIGURE 1.9

Links and association.

a b

State

Name

FIGURE 1.10

A state and transition in UML.

in UML. A stereotype name is written in the form <<signal>>. Figure 1.11 shows a
stereotype for a signal, which is a communication mechanism.

1.3.2 Behavioral Description
We have to specify the behavior of the system as well as its structure. One way to
specify the behavior of an operation is a state machine. Figure 1.10 shows UML
states; the transition between two states is shown by a skeleton arrow.

These state machines will not rely on the operation of a clock, as in hardware;
rather,changes from one state to another are triggered by the occurrence of events.

28 CHAPTER 1 Embedded Computing

<<signal>>
mouse_click
(x,y,button)

lefttorright: button
x, y: position

Name

Parameters

Event

Signal event
declaration

c d

a

b

e f

Signal event

draw_box(10,5,3,2,blue)

Call event

tm(time-value)

Time-out event

mouse_click (x,y,button)

FIGURE 1.11

Signal, call, and time-out events in UML.

An event is some type of action. The event may originate outside the system, such
as a user pressing a button. It may also originate inside, such as when one routine
finishes its computation and passes the result on to another routine. We will con-
centrate on the following three types of events defined by UML, as illustrated in
Figure 1.11:

■ A signal is an asynchronous occurrence. It is defined in UML by an object that
is labeled as a <<signal>>. The object in the diagram serves as a declaration
of the event’s existence. Because it is an object, a signal may have parameters
that are passed to the signal’s receiver.

■ A call event follows the model of a procedure call in a programming language.

■ A time-out event causes the machine to leave a state after a certain amount
of time. The label tm(time-value) on the edge gives the amount of time after
which the transition occurs. A time-out is generally implemented with an

1.3 Formalisms for System Design 29

Start state

Stop state

Region
found

Got menu
item

Found object
Object
highlighted

Called menu
 item

mouse_click(x,y,button)/
find_region(region)

region 5 menu/
which_menu(i)

region 5 drawing/
find_object(objid) highlight(objid)

call_menu(i)

FIGURE 1.12

A state machine specification in UML.

external timer.This notation simplifies the specification and allows us to defer
implementation details about the time-out mechanism.

We show the occurrence of all types of signals in a UML diagram in the same way—
as a label on a transition.

Let’s consider a simple state machine specification to understand the semantics
of UML state machines. A state machine for an operation of the display is shown
in Figure 1.12. The start and stop states are special states that help us to organize
the flow of the state machine. The states in the state machine represent different
conceptual operations. In some cases, we take conditional transitions out of states
based on inputs or the results of some computation done in the state. In other cases,
we make an unconditional transition to the next state. Both the unconditional and
conditional transitions make use of the call event. Splitting a complex operation
into several states helps document the required steps, much as subroutines can be
used to structure code.

It is sometimes useful to show the sequence of operations over time,particularly
when several objects are involved. In this case, we can create a sequence diagram,
like the one for a mouse click scenario shown in Figure 1.13.A sequence diagram
is somewhat similar to a hardware timing diagram, although the time flows verti-
cally in a sequence diagram, whereas time typically flows horizontally in a timing
diagram.The sequence diagram is designed to show a particular scenario or choice
of events—it is not convenient for showing a number of mutually exclusive possibil-
ities. In this case, the sequence shows what happens when a mouse click is on the
menu region. Processing includes three objects shown at the top of the diagram.
Extending below each object is its lifeline, a dashed line that shows how long the
object is alive. In this case, all the objects remain alive for the entire sequence, but
in other cases objects may be created or destroyed during processing. The boxes

30 CHAPTER 1 Embedded Computing

Object

Time
mouse_click (x,y,button)

which_menu(i)

Focus of
control

Lifeline

m: Mouse d1: Display m: Menu

call_menu(i)

FIGURE 1.13

A sequence diagram in UML.

along the lifelines show the focus of control in the sequence,that is,when the object
is actively processing. In this case, the mouse object is active only long enough to
create the mouse_click event. The display object remains in play longer; it in turn
uses call events to invoke the menu object twice: once to determine which menu
item was selected and again to actually execute the menu call. The find_region()
call is internal to the display object,so it does not appear as an event in the diagram.

1.4 MODEL TRAIN CONTROLLER
In order to learn how to use UML to model systems,we will specify a simple system,
a model train controller,which is illustrated in Figure 1.14.The user sends messages
to the train with a control box attached to the tracks. The control box may have
familiar controls such as a throttle, emergency stop button, and so on. Since the
train receives its electrical power from the two rails of the track, the control box
can send signals to the train over the tracks by modulating the power supply voltage.
As shown in the figure,the control panel sends packets over the tracks to the receiver
on the train.The train includes analog electronics to sense the bits being transmitted
and a control system to set the train motor’s speed and direction based on those
commands. Each packet includes an address so that the console can control several
trains on the same track; the packet also includes an error correction code (ECC)
to guard against transmission errors.This is a one-way communication system—the
model train cannot send commands back to the user.

We start by analyzing the requirements for the train control system.We will base
our system on a real standard developed for model trains.We then develop two spec-
ifications: a simple, high-level specification and then a more detailed specification.

1.4 Model Train Controller 31

Motor ReceiverHeader Address Command ECC

Message

Track

Power
supply

Console

System setup

Receiver,
motor controller

Console

Signaling the train

FIGURE 1.14

A model train control system.

1.4.1 Requirements
Before we can create a system specification, we have to understand the require-
ments. Here is a basic set of requirements for the system:

■ The console shall be able to control up to eight trains on a single track.

■ The speed of each train shall be controllable by a throttle to at least 63 different
levels in each direction (forward and reverse).

32 CHAPTER 1 Embedded Computing

■ There shall be an inertia control that shall allow the user to adjust the respon-
siveness of the train to commanded changes in speed. Higher inertia means
that the train responds more slowly to a change in the throttle, simulating the
inertia of a large train. The inertia control will provide at least eight different
levels.

■ There shall be an emergency stop button.

■ An error detection scheme will be used to transmit messages.

We can put the requirements into our chart format:

Name Model train controller
Purpose Control speed of up to eight model trains
Inputs Throttle, inertia setting, emergency stop, train number
Outputs Train control signals
Functions Set engine speed based upon inertia settings; respond

to emergency stop
Performance Can update train speed at least 10 times per second
Manufacturing cost $50
Power 10W (plugs into wall)
Physical size and weight Console should be comfortable for two hands,approx-

imate size of standard keyboard; weight �2 pounds

We will develop our system using a widely used standard for model train control.
We could develop our own train control system from scratch,but basing our system
upon a standard has several advantages in this case: It reduces the amount of work
we have to do and it allows us to use a wide variety of existing trains and other
pieces of equipment.

1.4.2 DCC
The Digital Command Control (DCC) standard (http://www.nmra.org/
standards/DCC/standards_rps/DCCStds.html) was created by the National Model
RailroadAssociation to support interoperable digitally-controlled model trains. Hob-
byists started building homebrew digital control systems in the 1970s and Marklin
developed its own digital control system in the 1980s. DCC was created to provide
a standard that could be built by any manufacturer so that hobbyists could mix and
match components from multiple vendors.

The DCC standard is given in two documents:

■ Standard S-9.1, the DCC Electrical Standard, defines how bits are encoded on
the rails for transmission.

■ Standard S-9.2, the DCC Communication Standard, defines the packets that
carry information.

1.4 Model Train Controller 33

Any DCC-conforming device must meet these specifications. DCC also provides
several recommended practices. These are not strictly required but they provide
some hints to manufacturers and users as to how to best use DCC.

The DCC standard does not specify many aspects of a DCC train system. It doesn’t
define the control panel, the type of microprocessor used, the programming lan-
guage to be used, or many other aspects of a real model train system. The standard
concentrates on those aspects of system design that are necessary for interoper-
ability. Overstandardization, or specifying elements that do not really need to be
standardized, only makes the standard less attractive and harder to implement.

The Electrical Standard deals with voltages and currents on the track. While
the electrical engineering aspects of this part of the specification are beyond the
scope of the book, we will briefly discuss the data encoding here. The standard
must be carefully designed because the main function of the track is to carry power
to the locomotives. The signal encoding system should not interfere with power
transmission either to DCC or non-DCC locomotives. A key requirement is that the
data signal should not change the DC value of the rails.

The data signal swings between two voltages around the power supply volt-
age. As shown in Figure 1.15, bits are encoded in the time between transitions,
not by voltage levels. A 0 is at least 100 �s while a 1 is nominally 58 �s. The dura-
tions of the high (above nominal voltage) and low (below nominal voltage) parts
of a bit are equal to keep the DC value constant. The specification also gives the
allowable variations in bit times that a conforming DCC receiver must be able to
tolerate.

The standard also describes other electrical properties of the system, such as
allowable transition times for signals.

The DCC Communication Standard describes how bits are combined into packets
and the meaning of some important packets. Some packet types are left undefined
in the standard but typical uses are given in Recommended Practices documents.

We can write the basic packet format as a regular expression:

PSA(sD) � E (1.1)

Time

58 ms $100 ms

1 0

FIGURE 1.15

Bit encoding in DCC.

34 CHAPTER 1 Embedded Computing

In this regular expression:

■ P is the preamble, which is a sequence of at least 10 1 bits. The command
station should send at least 14 of these 1 bits,some of which may be corrupted
during transmission.

■ S is the packet start bit. It is a 0 bit.

■ A is an address data byte that gives the address of the unit, with the most
significant bit of the address transmitted first. An address is eight bits long.
The addresses 00000000, 11111110, and 11111111 are reserved.

■ s is the data byte start bit, which, like the packet start bit, is a 0.

■ D is the data byte, which includes eight bits. A data byte may contain an
address, instruction, data, or error correction information.

■ E is a packet end bit, which is a 1 bit.

A packet includes one or more data byte start bit/data byte combinations. Note
that the address data byte is a specific type of data byte.

A baseline packet is the minimum packet that must be accepted by all DCC
implementations. More complex packets are given in a Recommended Practice doc-
ument. A baseline packet has three data bytes: an address data byte that gives the
intended receiver of the packet; the instruction data byte provides a basic instruc-
tion; and an error correction data byte is used to detect and correct transmission
errors.

The instruction data byte carries several pieces of information. Bits 0–3 provide
a 4-bit speed value. Bit 4 has an additional speed bit,which is interpreted as the least
significant speed bit. Bit 5 gives direction,with 1 for forward and 0 for reverse. Bits
7–8 are set at 01 to indicate that this instruction provides speed and direction.

The error correction databyte is the bitwise exclusive OR of the address and
instruction data bytes.

The standard says that the command unit should send packets frequently since
a packet may be corrupted. Packets should be separated by at least 5 ms.

1.4.3 Conceptual Specification
Digital Command Control specifies some important aspects of the system,
particularly those that allow equipment to interoperate. But DCC deliberately does
not specify everything about a model train control system.We need to round out our
specification with details that complement the DCC spec. A conceptual specifi-
cation allows us to understand the system a little better.We will use the experience
gained by writing the conceptual specification to help us write a detailed specifi-
cation to be given to a system architect. This specification does not correspond to
what any commercial DCC controllers do, but it is simple enough to allow us to
cover some basic concepts in system design.

1.4 Model Train Controller 35

A train control system turns commands into packets.A command comes from
the command unit while a packet is transmitted over the rails. Commands and
packets may not be generated in a 1-to-1 ratio. In fact, the DCC standard says
that command units should resend packets in case a packet is dropped during
transmission.

We now need to model the train control system itself. There are clearly two
major subsystems: the command unit and the train-board component as shown in
Figure 1.16. Each of these subsystems has its own internal structure. The basic
relationship between them is illustrated in Figure 1.17. This figure shows a UML
collaboration diagram;we could have used another type of figure,such as a class
or object diagram, but we wanted to emphasize the transmit/receive relationship
between these major subsystems. The command unit and receiver are each rep-
resented by objects; the command unit sends a sequence of packets to the train’s
receiver,as illustrated by the arrow.The notation on the arrow provides both the type
of message sent and its sequence in a flow of messages; since the console sends all
the messages,we have numbered the arrow’s messages as 1..n. Those messages are
of course carried over the track. Since the track is not a computer component and
is purely passive, it does not appear in the diagram. However, it would be perfectly
legitimate to model the track in the collaboration diagram, and in some situations
it may be wise to model such nontraditional components in the specification dia-
grams. For example, if we are worried about what happens when the track breaks,

Set-speed

value: integer

Set-inertia

value: unsigned-integer

Estop

Command

FIGURE 1.16

Class diagram for the train controller messages.

:console :receiver

1..n: command

FIGURE 1.17

UML collaboration diagram for major subsystems of the train controller system.

36 CHAPTER 1 Embedded Computing

Documentation
only

Train set

1..t

1

1 1

1
1

Controller

1
Motor
interface

Pulser*

1

Receiver

Console

1 1

1

1

1

1

1

1

1

1
1

Panel Formatter Transmitter

1

1

1

Knobs*

* 5 Physical object

Sender* Detector*

Train

FIGURE 1.18

A UML class diagram for the train controller showing the composition of the subsystems.

modeling the tracks would help us identify failure modes and possible recovery
mechanisms.

Let’s break down the command unit and receiver into their major components.
The console needs to perform three functions: read the state of the front panel
on the command unit, format messages, and transmit messages. The train receiver
must also perform three major functions:receive the message,interpret the message
(taking into account the current speed, inertia setting,etc.),and actually control the
motor. In this case, let’s use a class diagram to represent the design; we could also
use an object diagram if we wished.The UML class diagram is shown in Figure 1.18.
It shows the console class using three classes,one for each of its major components.
These classes must define some behaviors,but for the moment we will concentrate
on the basic characteristics of these classes:

■ The Console class describes the command unit’s front panel, which contains
the analog knobs and hardware to interface to the digital parts of the system.

■ The Formatter class includes behaviors that know how to read the panel
knobs and creates a bit stream for the required message.

■ The Transmitter class interfaces to analog electronics to send the message
along the track.

1.4 Model Train Controller 37

There will be one instance of the Console class and one instance of each of the
component classes, as shown by the numeric values at each end of the relationship
links. We have also shown some special classes that represent analog components,
ending the name of each with an asterisk:

■ Knobs* describes the actual analog knobs, buttons, and levers on the control
panel.

■ Sender* describes the analog electronics that send bits along the track.

Likewise, the Train makes use of three other classes that define its components:

■ The Receiver class knows how to turn the analog signals on the track into
digital form.

■ The Controller class includes behaviors that interpret the commands and
figures out how to control the motor.

■ The Motor interface class defines how to generate the analog signals required
to control the motor.

We define two classes to represent analog components:

■ Detector* detects analog signals on the track and converts them into digital
form.

■ Pulser* turns digital commands into the analog signals required to control the
motor speed.

We have also defined a special class, Train set, to help us remember that the
system can handle multiple trains. The values on the relationship edge show that
one train set can have t trains. We would not actually implement the train set class,
but it does serve as useful documentation of the existence of multiple receivers.

1.4.4 Detailed Specification
Now that we have a conceptual specification that defines the basic classes,let’s refine
it to create a more detailed specification. We won’t make a complete specification,
but we will add detail to the classes and look at some of the major decisions in the
specification process to get a better handle on how to write good specifications.

At this point, we need to define the analog components in a little more detail
because their characteristics will strongly influence the Formatter and Controller.
Figure 1.19 shows a class diagram for these classes; this diagram shows a little more
detail than Figure 1.18 since it includes attributes and behaviors of these classes.The
Panel has three knobs: train number (which train is currently being controlled),
speed (which can be positive or negative), and inertia. It also has one button for
emergency-stop.When we change the train number setting, we also want to reset the
other controls to the proper values for that train so that the previous train’s control
settings are not used to change the current train’s settings. To do this, Knobs* must

38 CHAPTER 1 Embedded Computing

provide a set-knobs behavior that allows the rest of the system to modify the knob
settings. (If we wanted or needed to model the user, we would expand on this
class definition to provide methods that a user object would call to specify these
parameters.)The motor system takes its motor commands in two parts.The Sender
and Detector classes are relatively simple:They simply put out and pick up a bit,
respectively.

To understand the Pulser class, let’s consider how we actually control the train
motor’s speed. As shown in Figure 1.20, the speed of electric motors is commonly
controlled using pulse-width modulation:Power is applied in a pulse for a fraction of
some fixed interval,with the fraction of the time that power is applied determining
the speed.The digital interface to the motor system specifies that pulse width as an
integer, with the maximum value being maximum engine speed. A separate binary
value controls direction. Note that the motor control takes an unsigned speed with a

Pulser*

pulse-width: unsigned-integer
direction: boolean

Knobs*

set-knobs()

train-knob: integer
speed-knob: integer
inertia-knob: unsigned-integer
emergency-stop: boolean

Detector*

<integer> read-bit(): integer

Sender*

send-bit()

FIGURE 1.19

Classes describing analog physical objects in the train control system.

V
V

Period

Fast

Slow

Time

�

�

FIGURE 1.20

Controlling motor speed by pulse-width modulation.

1.4 Model Train Controller 39

separate direction,while the panel specifies speed as a signed integer,with negative
speeds corresponding to reverse.

Figure 1.21 shows the classes for the panel and motor interfaces. These classes
form the software interfaces to their respective physical devices. The Panel class
defines a behavior for each of the controls on the panel; we have chosen not to
define an internal variable for each control since their values can be read directly
from the physical device, but a given implementation may choose to use internal
variables. The new-settings behavior uses the set-knobs behavior of the Knobs*
class to change the knobs settings whenever the train number setting is changed.
The Motor-interface defines an attribute for speed that can be set by other classes.
As we will see in a moment,the controller’s job is to incrementally adjust the motor’s
speed to provide smooth acceleration and deceleration.

TheTransmitter and Receiver classes are shown in Figure 1.22.They provide the
software interface to the physical devices that send and receive bits along the track.

Panel

train-number(): integer

panel-active(): boolean

speed(): integer

inertia(): integer

estop(): boolean

new-settings()

Motor-interface

speed: integer

FIGURE 1.21

Class diagram for the Panel and Motor interface.

Transmitter

send-speed(adrs: integer,
 speed: integer)
send-inertia(adrs: integer,
 val: integer)
send-estop(adrs: integer)

Receiver

current: command
new: boolean

read-cmd()

new-cmd(): boolean
rcv-type(msg-type:
 command)
rcv-speed(val: integer)
rcv-inertia(val: integer)

FIGURE 1.22

Class diagram for the Transmitter and Receiver.

40 CHAPTER 1 Embedded Computing

The Transmitter provides a distinct behavior for each type of message that can be
sent; it internally takes care of formatting the message. The Receiver class provides
a read-cmd behavior to read a message off the tracks. We can assume for now that
the receiver object allows this behavior to run continuously to monitor the tracks
and intercept the next command. (We consider how to model such continuously
running behavior as processes in Chapter 6.)We use an internal variable to hold the
current command. Another variable holds a flag showing when the command has
been processed. Separate behaviors let us read out the parameters for each type of
command; these messages also reset the new flag to show that the command has
been processed. We do not need a separate behavior for an Estop message since it
has no parameters—knowing the type of message is sufficient.

Now that we have specified the subsystems around the formatter and controller,
it is easier to see what sorts of interfaces these two subsystems may need.

The Formatter class is shown in Figure 1.23. The formatter holds the current
control settings for all of the trains.The send-command method is a utility function
that serves as the interface to the transmitter. The operate function performs the
basic actions for the object.At this point,we only need a simple specification,which
states that the formatter repeatedly reads the panel,determines whether any settings
have changed, and sends out the appropriate messages. The panel-active behavior
returns true whenever the panel’s values do not correspond to the current values.

The role of the formatter during the panel’s operation is illustrated by the
sequence diagram of Figure 1.24. The figure shows two changes to the knob set-
tings: first to the throttle, inertia, or emergency stop; then to the train number. The
panel is called periodically by the formatter to determine if any control settings
have changed. If a setting has changed for the current train, the formatter decides
to send a command, issuing a send-command behavior to cause the transmitter to
send the bits. Because transmission is serial, it takes a noticeable amount of time for
the transmitter to finish a command; in the meantime, the formatter continues to

Formatter

current-train: integer

current-speed[ntrains]: integer

current-inertia[ntrains]: unsigned-integer

current-estop[ntrains]: boolean

send-command()

panel-active(): boolean

operate()

FIGURE 1.23

Class diagram for the Formatter class.

1.4 Model Train Controller 41

check the panel’s control settings. If the train number has changed, the formatter
must cause the knob settings to be reset to the proper values for the new train.

We have not yet specified the operation of any of the behaviors. We define what
a behavior does by writing a state diagram. The state diagram for a very simple
version of the operate behavior of the Formatter class is shown in Figure 1.25.
This behavior watches the panel for activity: If the train number changes, it updates

:Formatter:Knobs* :Panel :Transmitter

C
h

an
ge

 in
 s

p
ee

d
/i

n
er

ti
a/

es
to

p
C

h
an

ge
 in

 tr
ai

n
 n

u
m

b
er

Change in
control settings

Change in train number

set-knobs Operate

send-command

panel-active

send-speed,
send-inertia,
send-estop

Read panel
Panel settings

Read panel
Panel settings

Read panel
Panel settings

Read panel
Panel settings

new-settings

FIGURE 1.24

Sequences diagram for transmitting a control input.

Idle

panel-active() New train number

Other

new-settings()

send-command()

FIGURE 1.25

State diagram for the formatter operate behavior.

42 CHAPTER 1 Embedded Computing

the panel display; otherwise, it causes the required message to be sent. Figure 1.26
shows a state diagram for the panel-active behavior.

The definition of the train’s Controller class is shown in Figure 1.27.The operate
behavior is called by the receiver when it gets a new command;operate looks at the
contents of the message and uses the issue-command behavior to change the speed,
direction, and inertia settings as necessary. A specification for operate is shown in
Figure 1.28.

panel*: read-knob()

panel*: read-speed()

current-train !5 train-knob

T

F

F

F

F

current-train 5 train-knob
update-screen
changed 5 true

current-speed !5 throttle

current-speed 5 throttle
changed 5 true

panel*: read-inertia()

panel*: read-estop()

Return changed

current-inertia !5 inertia-knob

current-inertia 5 inertia-knob
changed 5 true

current-estop !5 estop-button-value

current-estop 5 estop-button-value
changed 5 true

Start

Stop

T

T

T

FIGURE 1.26

State diagram for the panel-active behavior.

1.4 Model Train Controller 43

The operation of the Controller class during the reception of a set-speed com-
mand is illustrated in Figure 1.29. The Controller’s operate behavior must execute
several behaviors to determine the nature of the message. Once the speed command
has been parsed, it must send a sequence of commands to the motor to smoothly
change the train’s speed.

It is also a good idea to refine our notion of a command. These changes result
from the need to build a potentially upward-compatible system. If the messages
were entirely internal, we would have more freedom in specifying messages that
we could use during architectural design. But since these messages must work with
a variety of trains and we may want to add more commands in a later version of the
system, we need to specify the basic features of messages for compatibility. There
are three important issues. First, we need to specify the number of bits used to
determine the message type. We choose three bits, since that gives us five unused
message codes. Second, we need to include information about the length of the

Controller

operate()
issue-command()

current-train: integer
current-speed[ntrains]: unsigned-integer
current-direction[ntrains]: boolean
current-inertia[ntrains]: unsigned-integer

FIGURE 1.27

Class diagram for the Controller class.

Wait for
command from
receiver

read-cmd
issue-command()

FIGURE 1.28

State diagram for the Controller operate behavior.

44 CHAPTER 1 Embedded Computing

Set-pulse

Set-pulse

Set-pulse

Set-pulse

Set-pulse

Set-speed

operateread-cmd

rcv-type

rcv-speed

new-cmd

:Receiver :Controller :Motor-interface :Pulser*

FIGURE 1.29

Sequence diagram for a set-speed command received by the train.

data fields, which is determined by the resolution for speeds and inertia set by the
requirements.Third,we need to specify the error correction mechanism;we choose
to use a single-parity bit.We can update the classes to provide this extra information
as shown in Figure 1.30.

1.4.5 Lessons Learned
We have learned a couple of things in this exercise beyond gaining experience
with UML notation. First, standards are important. We often can’t avoid working
with standards but standards often save us work and allow us to make use of com-
ponents designed by others. Second, specifying a system is not easy. You often
learn a lot about the system you are trying to build by writing a specification.Third,
specification invariably requires making some choices that may influence the imple-
mentation. Good system designers use their experience and intuition to guide them
when these kinds of choices must be made.

1.5 A Guided Tour of This Book 45

Command

type: 3-bits
address: 3-bits
parity: 1-bit

type 5 010
value: 7-bits

type 5 001
value: 3-bits

EstopSet-inertiaSet-speed

type 5 000

FIGURE 1.30

Refined class diagram for the train controller commands.

1.5 A GUIDED TOUR OF THIS BOOK
The most efficient way to learn all the necessary concepts is to move from the
bottom–up. This book is arranged so that you learn about the properties of com-
ponents and build toward more complex systems and a more complete view
of the system design process. Veteran designers have learned enough bottom-
up knowledge from experience to know how to use a top–down approach to
designing a system, but when learning things for the first time, the bottom–up
approach allows you to build more sophisticated concepts on the basis of lower-level
ideas.

We will use several organizational devices throughout the book to help you.
Application Examples focus on a particular end-use application and how it relates
to embedded system design. We will also make use of Programming Examples to
describe software designs. In addition to these examples, each chapter will use a
significant system design example to demonstrate the major concepts of the chapter.

Each chapter includes questions that are intended to be answered on paper as
homework assignments. The chapters also include lab exercises. These are more
open ended and are intended to suggest activities that can be performed in the lab
to help illuminate various concepts in the chapter.

Throughout the book, we will use two CPUs as examples: the ARM RISC pro-
cessor and theTexas Instruments TITMS320C55x™ (C55x) digital signal processor
(DSP). Both are well-known microprocessors used in many embedded applications.
Using real microprocessors helps make concepts more concrete. However,our aim
is to learn concepts that can be applied to many different microprocessors,not only
ARM and the C55x. While microprocessors will evolve over time (Warhol’s Law of

46 CHAPTER 1 Embedded Computing

Computer Architecture [Wol92] states that every microprocessor architecture will
be the price/performance leader for 15 min), the concepts of embedded system
design are fundamental and long term.

1.5.1 Chapter 2: Instruction Sets
In Chapter 2,we begin our study of microprocessors by concentrating on instruc-
tion sets. The chapter covers the instruction sets of the ARM and C55x micro-
processors in separate sections. These two microprocessors are very different.
Understanding all details of both is not strictly necessary to the design of embed-
ded systems. However, comparing the two does provide some interesting lessons
in instruction set architectures.

Understanding details of the instruction set is important both for concreteness
and for seeing how architectural features can affect performance and other system
attributes. But many mechanisms,such as caches and memory management,can be
understood in general before we go on to details of how they are implemented in
ARM and C55x.

We do not introduce a design example in this chapter—it is difficult to build
even a simple working system without understanding other aspects of the CPU that
will be introduced in Chapter 3. However,understanding instruction sets is critical
to understanding problems such as execution speed and code size that we study
throughout the book.

1.5.2 Chapter 3: CPUs
Chapter 3 rounds out our discussion of microprocessors by focusing on the
following important mechanisms that are not part of the instruction set itself:

■ We will introduce the fundamental mechanisms of input and output ,
including interrupts.

■ We also study the cache and memory management unit .

We also begin to consider how the CPU hardware affects important characteris-
tics of program execution. Program performance and power consumption are very
important parameters in embedded system design. An understanding of how archi-
tectural aspects such as pipelining and caching affect these system characteristics
is a foundation for analyzing and optimizing programs in later chapters.

Our study of program performance will begin with instruction-level perfor-
mance. The basics of pipeline and cache timing will serve as the foundation for
our studies of larger program units.

We use as an example a simple data compression unit, concentrating on the
programming of the core compression algorithm.

1.5.3 Chapter 4: Bus-Based Computer Systems
Chapter 4 looks at the basic hardware and software platform for embedded
computing. The microprocessor is very important, but only part of a system that

1.5 A Guided Tour of This Book 47

includes memory, I/O devices, and low-level software. We need to understand the
basic characteristics of the platform before we move on to build sophisticated
systems.

The basic embedded computing platform includes a microprocessor, I/O hard-
ware, I/O driver software, and memory. Application-specific software and hardware
can be added to this platform to turn it into an embedded computing platform.The
microprocessor is at the center of both the hardware and software structure of the
embedded computing system. The CPU controls the bus that connects to memory
and I/O devices; the CPU also runs software that talks to the devices. In particular,
I/O is central to embedded computing. Many aspects of I/O are not typically studied
in modern computer architecture courses,so we need to master the basic concepts
of input and output before we can design embedded systems.

Chapter 4 covers several important aspects of the platform:

■ We study in detail how the CPU talks to memory and devices using the
microprocessor bus.

■ Based on our knowledge of bus operation, we study the structure of the
memory system and types of memory components.

■ We survey some important types of I/O devices to understand how to
implement various types of real-world interfaces.

■ We look at basic techniques for embedded system design and debugging.

System performance includes the bus and memory system,too.We will see how
bus and memory transactions affect the execution time of systems.

We use an alarm clock as a design example. The clock does relatively little com-
putation but a lot of I/O: It uses a timer to tell the CPU when to update the time,
it reads buttons on the clock to respond to the user, and it continually updates the
clock display.

1.5.4 Chapter 5: Program Design and Analysis
Chapter 5 looks inside the CPU to understand how instructions are executed
as programs. Given the challenges of embedded programming—meeting strict
performance goals, minimizing program size, reducing power consumption—this
is an especially important topic. We build upon the fundamentals of computer
architecture to understand how to design embedded programs.

■ As a part of our study of the relationship between programs and instructions,
we introduce a model for high-level language programs known as the con-
trol/data flow graph (CDFG). We use this model extensively to help us
analyze and optimize programs.

■ Because embedded programs are largely written in higher-level languages,we
will look at the processes for compiling,assembling,and linking to understand
how high-level language programs are translated into instructions and data.

48 CHAPTER 1 Embedded Computing

Some of the discussion surveys basic techniques for translating high-level lan-
guage programs,but we also spend time on compilation techniques designed
specifically to meet embedded system challenges.

■ We develop techniques for the performance analysis of programs. It is diffi-
cult to determine the speed of a program simply by examining its source code.
We learn how to use a combination of the source code, its assembly language
implementation,and expected data inputs to analyze program execution time.
We also study some basic techniques for optimizing program performance.

■ An important topic related to performance analysis is power analysis. We
build on performance analysis methods to learn how to estimate the power
consumption of programs.

■ It is critical that the programs that we design function correctly. The con-
trol/data flow graph and techniques we have learned for performance analysis
are related to techniques for testing programs. We develop techniques that
can methodically develop a set of tests for a program in order to exercise likely
bugs.

At this point, we can consider the performance of a complete program. We will
introduce the concept of worst-case execution time as a basic measure of program
execution time.

Our design example for Chapter 5 is a software modem. A modem translates
between the digital world of the microprocessor and the analog transmission
scheme of the telephone network. Rather than use analog electronics to build a
modem, we can use a microprocessor and special-purpose software. Because the
modem has strict real-time deadlines, this example lets us exercise our knowledge
of the microprocessor and of program analysis.

1.5.5 Chapter 6: Processes and Operating Systems
Chapter 6 builds on our knowledge of programs to study a special type of software
component, the process, and operating systems that use processes to create sys-
tems.A process is an execution of a program;an embedded system may have several
processes running concurrently. A separate real-time operating system (RTOS)
controls when the processes run on the CPU. Processes are important to embedded
system design because they help us juggle multiple events happening at the same
time. A real-time embedded system that is designed without processes usually ends
up as a mess of spaghetti code that does not operate properly.

We will study the basic concepts of processes and process-based design in this
chapter:

■ We begin by introducing the process abstraction. A process is defined by
a combination of the program being executed and the current state of the
program. We will learn how to switch contexts between processes.

1.5 A Guided Tour of This Book 49

■ We cover the fundamentals of interprocess communication, including the
various styles of communication and how they can be implemented.

■ In order to make use of processes, we must be able to schedule them. We
discuss process priorities and how they can be used to guide scheduling.

■ The real-time operating system is the software component that implements
the process abstraction and scheduling. We study how RTOSs implement
schedules, how programs interface to the operating system, and how we can
evaluate the performance of systems built from RTOSs.

Tasks introduce a new level of complexity to performance analysis. Our study of
real-time scheduling provides an important foundation for the study of multi-tasking
systems.

Chapter 6 uses as a design example a digital telephone answering machine. Not
only does an answering machine require real-time operation—telephone data are
regularly sampled and stored to memory—but it must juggle several tasks at once.
The answering machine must be able to operate the user interface simultaneously
with recording voice data. In the most complex version of the answering machine,
we must also simultaneously compress voice data during recording and uncompress
it during playback.To emphasize the role of processes in structuring real-time com-
putation, we compare the answering machine design with and without processes.
It becomes apparent that the implementation that does not use processes will be
considerably harder to design and debug.

1.5.6 Chapter 7: Multiprocessors
Many embedded systems are multiprocessors—computer systems with more than
one processing element. The multiprocessor may use CPUs and DSPs; it may also
include non-programmable elements known as accelerators. Multiprocessors are
often more energy-efficient and less expensive than platforms that try to do all the
required computing on one big CPU.

Chapter 7 studies the design of multiprocessor embedded systems.We will spend
a good amount of time on hardware/software co-design and the design of accel-
erated systems. Designing an accelerated system requires more than just building
the accelerator itself.We have to determine how to connect the accelerator into the
hardware and software so that we make best use of its capabilities. For example,the
data transfers between the CPU and accelerator can consume all of the time savings
created by the accelerator if we are not careful. We can also introduce added par-
allelism into the system if we have the CPU working on something else while the
accelerator does its job.

Understanding the performance of accelerators requires a basic understanding
of multiprocessor performance. We also need to extend our knowledge of bus and
memory system performance. We will look at the architecture of several consumer
electronics devices.A surprising number of devices make use of multiple processors
under the hood.

50 CHAPTER 1 Embedded Computing

We use as our example a video accelerator. Digital video requires performing
a huge number of operations in real time; video also requires large volumes of
data transfers. As such, it provides a good way to study not only the design of the
accelerator itself but also how it fits into the overall system.

1.5.7 Chapter 8: Networks
Chapter 8 studies how we can build more complex embedded systems by letting
several components communicate on a network.The network may include several
microprocessors, I/O devices, and special-purpose acceleration units. Embedded
systems that are built from multiple microprocessors are called distributed embed-
ded systems.The automobile is a prime example of a distributed embedded system:
Microprocessors are distributed all over the automobile performing distributed
computations and coordinating the operation of the vehicle using networks.

This chapter builds on our knowledge of processes in particular to understand
networks and their use in system design as follows:

■ We start by discussing the fundamentals of network protocols and how
networks differ from simple buses.

■ Based on our knowledge of interprocess communication,we see how to allow
processes to communicate over networks.We see how real-time operating sys-
tems can be extended to support multiple microprocessors whose processes
communicate over a network.

■ We study how to break a design into multiple components that commu-
nicate over a network. In particular, we need to know how to factor the
communication delay of the network into our performance analysis.

We will also look at the networks used in automobiles and airplanes, which
are prime examples of networked embedded systems. Chapter 8 uses as a design
example a simple elevator system. An elevator is necessarily a distributed system
operating over a network: We must have control in each elevator, but we must
also coordinate the elevators to respond to user requests. And because the elevator
includes some real-time control requirements—we must be able to stop the elevator
at the door to the right floor—it provides a very good example to show how to
properly distribute computations over the network to maximize responsiveness.

1.5.8 Chapter 9: System Design Techniques
Chapter 9 is our capstone chapter.This chapter studies the design of large,complex
embedded systems. We introduce important concepts that are essential for the suc-
cessful completion of large embedded system projects,and we use those techniques
to help us integrate the knowledge obtained throughout the book.

This chapter delves into several topics related to large-scale embedded system
design:

Further Reading 51

■ We revisit the topic of design methodologies. Based on our more detailed
knowledge of embedded system design,we can better understand the role of
methodology and the possible variations in methodologies.

■ We study system specification methods. Proper specifications become
increasingly important as system complexity grows. More formal specification
techniques help us capture intent clearly, consistently, and unambiguously.

■ We look at quality assurance techniques. The program testing techniques
covered in Chapter 5 are a good foundation but may not scale easily to complex
systems.Additional methods are required to ensure that we exercise complex
systems to shake out bugs.

SUMMARY
Embedded microprocessors are everywhere. Microprocessors allow sophisticated
algorithms and user interfaces to be added relatively inexpensively to an amazing
variety of products. Microprocessors also help reduce design complexity and time
by separating out hardware and software design. Embedded system design is much
more complex than programming PCs because we must meet multiple design con-
straints, including performance, cost, and so on. In the remainder of this book, we
will build a set of techniques from the bottom up that will allow us to conceive,
design, and implement sophisticated microprocessor-based systems.

What We Learned

■ Embedded computing can be fun. It can also be difficult.

■ Trying to hack together a complex embedded system probably won’t work.
You need to master a number of skills and understand the design process.

■ Your system must meet certain functional requirements, such as features. It
may also have to perform tasks to meet deadlines,limit its power consumption,
be of a certain size, or meet other nonfunctional requirements.

■ A hierarchical design process takes the design through several different levels
of abstraction. You may need to do both top–down and bottom–up design.

■ We use UML to describe designs at several levels of abstraction.

■ This book takes a bottom–up view of embedded system design.

FURTHER READING
Spasov [Spa99] describes how 68HC11 microcontrollers are used in Canon EOS
cameras. Douglass [Dou98] gives a good introduction to UML for embedded

52 CHAPTER 1 Embedded Computing

systems. Other foundational books on object-oriented design include Rumbaugh
et al. [Rum91], Booch [Boo91], Shlaer and Mellor [Shl92], and Selic et al. [Sel94].

QUESTIONS
Q1-1 Briefly describe the distinction between requirements and specification.

Q1-2 Briefly describe the distinction between specification and architecture.

Q1-3 At what stage of the design methodology would we determine what type
of CPU to use (8-bit vs. 16-bit vs. 32-bit,which model of a particular type of
CPU, etc.)?

Q1-4 At what stage of the design methodology would we choose a programming
language?

Q1-5 At what stage of the design methodology would we test our design for
functional correctness?

Q1-6 Compare and contrast top–down and bottom–up design.

Q1-7 Provide a concrete example of how bottom–up information from the
software programming phase of design may be useful in refining the
architectural design.

Q1-8 Give a concrete example of how bottom–up information from I/O device
hardware design may be useful in refining the architectural design.

Q1-9 Create a UML state diagram for the issue-command() behavior of the
Controller class of Figure 1.27.

Q1-10 Show how a Set-speed command flows through the refined class structure
described in Figure 1.18, moving from a change on the front panel to the
required changes on the train:

a. Show it in the form of a collaboration diagram.

b. Show it in the form of a sequence diagram.

Q1-11 Show how a Set-inertia command flows through the refined class structure
described in Figure 1.18, moving from a change on the front panel to the
required changes on the train:

a. Show it in the form of a collaboration diagram.

b. Show it in the form of a sequence diagram.

Q1-12 Show how an Estop command flows through the refined class structure
described in Figure 1.18, moving from a change on the front panel to the
required changes on the train:

Lab Exercises 53

a. Show it in the form of a collaboration diagram.

b. Show it in the form of a sequence diagram.

Q1-13 Draw a state diagram for a behavior that sends the command bits on
the track. The machine should generate the address, generate the correct
message type, include the parameters, and generate the ECC.

Q1-14 Draw a state diagram for a behavior that parses the received bits. The
machine should check the address, determine the message type, read the
parameters, and check the ECC.

Q1-15 Draw a class diagram for the classes required in a basic microwave oven.
The system should be able to set the microwave power level between
1 and 9 and time a cooking run up to 59 min and 59 s in 1-s incre-
ments. Include * classes for the physical interfaces to the telephone line,
microphone, speaker, and buttons.

Q1-16 Draw a collaboration diagram for the microwave oven of question Q1-15.
The diagram should show the flow of messages when the user first sets the
power level to 7, then sets the timer to 2:30, and then runs the oven.

LAB EXERCISES
L1-1 How would you measure the execution speed of a program running on a

microprocessor? You may not always have a system clock available to measure
time. To experiment, write a piece of code that performs some function that
takes a small but measurable amount of time,such as a matrix algebra function.
Compile and load the code onto a microprocessor,and then try to observe the
behavior of the code on the microprocessor’s pins.

L1-2 Complete the detailed specification of the train controller that was started in
Section 1.4.4. Show all the required classes. Specify the behaviors for those
classes. Use object diagrams to show the instantiated objects in the complete
system. Develop at least one sequence diagram to show system operation.

L1-3 Develop a requirements description for an interesting device.The device may
be a household appliance, a computer peripheral, or whatever you wish.

L1-4 Write a specification for an interesting device in UML. Try to use a variety of
UML diagrams, including class diagrams, object diagrams, sequence diagrams,
and so on.

This page intentionally left blank

CHAPTER

2Instruction Sets
■ A brief review of computer architecture taxonomy and

assembly language.

■ Two very different architectures: ARM and TI C55x.

INTRODUCTION
In this chapter, we begin our study of microprocessors by studying instruction
sets—the programmer’s interface to the hardware.Although we hope to do as much
programming as possible in high-level languages, the instruction set is the key to
analyzing the performance of programs. By understanding the types of instructions
that the CPU provides,we gain insight into alternative ways to implement a particular
function.

We use two CPUs as examples.The ARM processor [Fur96, Jag95] is widely used
in cell phones and many other systems. (The ARM architecture comes in several
versions; we will concentrate on ARM version 7.) The Texas Instruments C55x is a
family of digital signal processors (DSPs) [Tex01,Tex02].

We will start with a brief introduction to the terminology of computer architec-
tures and instruction sets, followed by detailed descriptions of the ARM and C55x
instruction sets.

2.1 PRELIMINARIES
In this section, we will look at some general concepts in computer architecture,
including the different styles of computer architecture and the nature of assembly
language.

2.1.1 Computer Architecture Taxonomy
Before we delve into the details of microprocessor instruction sets, it is helpful to
develop some basic terminology. We do so by reviewing a taxonomy of the basic
ways we can organize a computer.

A block diagram for one type of computer is shown in Figure 2.1. The com-
puting system consists of a central processing unit (CPU) and a memory.

55

56 CHAPTER 2 Instruction Sets

CPU
Data

Address

Memory

PCADD r5, r1, r3

FIGURE 2.1

A von Neumann architecture computer.

CPU

Address

Address

Data

Instructions

PC

Data memory

Program memory

FIGURE 2.2

A Harvard architecture.

The memory holds both data and instructions, and can be read or written when
given an address. A computer whose memory holds both data and instructions is
known as a von Neumann machine.

The CPU has several internal registers that store values used internally. One of
those registers is the program counter (PC),which holds the address in memory
of an instruction.The CPU fetches the instruction from memory,decodes the instruc-
tion, and executes it. The program counter does not directly determine what the
machine does next, but only indirectly by pointing to an instruction in memory. By
changing only the instructions, we can change what the CPU does. It is this sepa-
ration of the instruction memory from the CPU that distinguishes a stored-program
computer from a general finite-state machine.

An alternative to the von Neumann style of organizing computers is the Harvard
architecture, which is nearly as old as the von Neumann architecture. As shown
in Figure 2.2, a Harvard machine has separate memories for data and program.
The program counter points to program memory, not data memory. As a result, it is
harder to write self-modifying programs (programs that write data values, then use
those values as instructions) on Harvard machines.

2.1 Preliminaries 57

Harvard architectures are widely used today for one very simple reason—the
separation of program and data memories provides higher performance for digital
signal processing. Processing signals in real-time places great strains on the data
access system in two ways: First, large amounts of data flow through the CPU; and
second,that data must be processed at precise intervals,not just when the CPU gets
around to it. Data sets that arrive continuously and periodically are called streaming
data. Having two memories with separate ports provides higher memory band-
width;not making data and memory compete for the same port also makes it easier
to move the data at the proper times. DSPs constitute a large fraction of all micro-
processors sold today,and most of them are Harvard architectures.A single example
shows the importance of DSP: Most of the telephone calls in the world go through
at least two DSPs, one at each end of the phone call.

Another axis along which we can organize computer architectures relates to
their instructions and how they are executed. Many early computer architectures
were what is known today as complex instruction set computers (CISC).
These machines provided a variety of instructions that may perform very com-
plex tasks, such as string searching; they also generally used a number of different
instruction formats of varying lengths. One of the advances in the development of
high-performance microprocessors was the concept of reduced instruction set
computers (RISC).These computers tended to provide somewhat fewer and sim-
pler instructions.The instructions were also chosen so that they could be efficiently
executed in pipelined processors. Early RISC designs substantially outperformed
CISC designs of the period.As it turns out,we can use RISC techniques to efficiently
execute at least a common subset of CISC instruction sets, so the performance gap
between RISC-like and CISC-like instruction sets has narrowed somewhat.

Beyond the basic RISC/CISC characterization,we can classify computers by sev-
eral characteristics of their instruction sets. The instruction set of the computer
defines the interface between software modules and the underlying hardware;
the instructions define what the hardware will do under certain circumstances.
Instructions can have a variety of characteristics, including:

■ Fixed versus variable length.

■ Addressing modes.

■ Numbers of operands.

■ Types of operations supported.

The set of registers available for use by programs is called the programming
model ,also known as the programmer model . (The CPU has many other registers
that are used for internal operations and are unavailable to programmers.)

There may be several different implementations of an architecture. In fact, the
architecture definition serves to define those characteristics that must be true of
all implementations and what may vary from implementation to implementation.
Different CPUs may offer different clock speeds, different cache configurations,

58 CHAPTER 2 Instruction Sets

changes to the bus or interrupt lines, and many other changes that can make one
model of CPU more attractive than another for any given application.

2.1.2 Assembly Language
Figure 2.3 shows a fragment ofARM assembly code to remind us of the basic features
of assembly languages. Assembly languages usually share the same basic features:

■ One instruction appears per line.

■ Labels, which give names to memory locations, start in the first column.

■ Instructions must start in the second column or after to distinguish them from
labels.

■ Comments run from some designated comment character (; in the case of
ARM) to the end of the line.

Assembly language follows this relatively structured form to make it easy
for the assembler to parse the program and to consider most aspects of the
program line by line. (It should be remembered that early assemblers were writ-
ten in assembly language to fit in a very small amount of memory. Those early
restrictions have carried into modern assembly languages by tradition.) Figure 2.4
shows the format of an ARM data processing instruction such as an ADD. For the
instruction

ADDGT r0,r3,#5

the cond field would be set according to the GT condition (1100), the opcode field
would be set to the binary code for the ADD instruction (0100), the first operand
register Rn would be set to 3 to represent r3, the destination register Rd would be
set to 0 for r0, and the operand 2 field would be set to the immediate value of 5.

Assemblers must also provide some pseudo-ops to help programmers create
complete assembly language programs.An example of a pseudo-op is one that allows
data values to be loaded into memory locations.These allow constants, for example,
to be set into memory. An example of a memory allocation pseudo-op for ARM is
shown in Figure 2.5.The ARM % pseudo-op allocates a block of memory of the size
specified by the operand and initializes those locations to zero.

label1 ADR r4,c
 LDR r0,[r4] ; a comment
 ADR r4,d
 LDR r1,[r4]
 SUB r0,r0,r1 ; another comment

FIGURE 2.3

An example of ARM assembly language.

2.2 ARM Processor 59

X 5 1 (represents operand 2):

X 5 0 format:

cond

31 27 25 24 20 19 15 11 0

00 X opcode S Rn Rd Format determined by X bit

11 7 0

8-bit immediate#rot

11 6 4 3 0

#shift Sh 0 Rm

11 7 6 4 3 0

Rm1Sh0Rs

FIGURE 2.4

Format of ARM data processing instructions.

BIGBLOCK % 10

FIGURE 2.5

Pseudo-ops for allocating memory.

2.2 ARM PROCESSOR
In this section, we concentrate on the ARM processor. ARM is actually a family
of RISC architectures that have been developed over many years. ARM does not
manufacture its own VLSI devices; rather, it licenses its architecture to companies
who either manufacture the CPU itself or integrate the ARM processor into a larger
system.

The textual description of instructions, as opposed to their binary represen-
tation, is called an assembly language. ARM instructions are written one per
line, starting after the first column. Comments begin with a semicolon and con-
tinue to the end of the line. A label, which gives a name to a memory location,
comes at the beginning of the line, starting in the first column. Here is an
example:

LDR r0,[r8]; a comment
label ADD r4,r0,r1

60 CHAPTER 2 Instruction Sets

2.2.1 Processor and Memory Organization
Different versions of theARM architecture are identified by different numbers. ARM7
is a von Neumann architecture machine, while ARM9 uses a Harvard architecture.
However, this difference is invisible to the assembly language programmer, except
for possible performance differences.

The ARM architecture supports two basic types of data:

■ The standard ARM word is 32 bits long.

■ The word may be divided into four 8-bit bytes.

ARM7 allows addresses up to 32 bits long.An address refers to a byte,not a word.
Therefore, the word 0 in the ARM address space is at location 0, the word 1 is at 4,
the word 2 is at 8,and so on. (As a result, the PC is incremented by 4 in the absence
of a branch.) The ARM processor can be configured at power-up to address the
bytes in a word in either little-endian mode (with the lowest-order byte residing
in the low-order bits of the word) or big-endian mode (the lowest-order byte
stored in the highest bits of the word),as illustrated in Figure 2.6 [Coh81]. General-
purpose computers have sophisticated instruction sets. Some of this sophistication
is required simply to provide the functionality of a general computer, while other
aspects of instruction sets may be provided to increase performance, reduce code
size, or otherwise improve program characteristics. In this section, we concentrate
on the functionality of theARM instruction set and will defer performance and other
aspects of the CPU to Section 5.6.

Bit 31 Bit 0

Bit 31 Bit 0

Word 4

Word 0

Word 4

Word 0

Little-endian

Big-endian

Byte 3 Byte 2 Byte 1 Byte 0

Byte 0 Byte 1 Byte 2 Byte 3

FIGURE 2.6

Byte organizations within an ARM word.

2.2 ARM Processor 61

2.2.2 Data Operations
Arithmetic and logical operations in C are performed in variables. Variables are
implemented as memory locations. Therefore, to be able to write instructions to
perform C expressions and assignments, we must consider both arithmetic and
logical instructions as well as instructions for reading and writing memory.

Figure 2.7 shows a sample fragment of C code with data declarations and several
assignment statements. The variables a, b, c, x, y, and z all become data locations
in memory. In most cases data are kept relatively separate from instructions in the
program’s memory image.

In the ARM processor, arithmetic and logical operations cannot be performed
directly on memory locations. While some processors allow such operations
to directly reference main memory, ARM is a load-store architecture—data
operands must first be loaded into the CPU and then stored back to main memory
to save the results. Figure 2.8 shows the registers in the basic ARM programming
model. ARM has 16 general-purpose registers, r0 through r15. Except for r15, they
are identical—any operation that can be done on one of them can be done on the
other one also. The r15 register has the same capabilities as the other registers, but
it is also used as the program counter.The program counter should of course not be
overwritten for use in data operations. However, giving the PC the properties of a
general-purpose register allows the program counter value to be used as an operand
in computations, which can make certain programming tasks easier.

The other important basic register in the programming model is the cur-
rent program status register (CPSR). This register is set automatically during
every arithmetic, logical, or shifting operation. The top four bits of the CPSR
hold the following useful information about the results of that arithmetic/logical
operation:

■ The negative (N) bit is set when the result is negative in two’s-complement
arithmetic.

■ The zero (Z) bit is set when every bit of the result is zero.

■ The carry (C) bit is set when there is a carry out of the operation.

■ The overflow (V) bit is set when an arithmetic operation results in an overflow.

int a, b, c, x, y, z;
x � (a � b) � c;
y � a*(b � c);
z � (a << 2) | (b & 15);

FIGURE 2.7

A C fragment with data operations.

62 CHAPTER 2 Instruction Sets

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

CPSR

31 0

N Z C V

FIGURE 2.8

The basic ARM programming model.

These bits can be used to check easily the results of an arithmetic operation.
However, if a chain of arithmetic or logical operations is performed and the inter-
mediate states of the CPSR bits are important, then they must be checked at each
step since the next operation changes the CPSR values. Example 2.1 illustrates the
computation of CPSR bits.

Example 2.1

Status bit computation in the ARM
An ARM word is 32 bits. In C notation, a hexadecimal number starts with 0x, such as 0xffffffff,
which is a two’s-complement representation of �1 in a 32-bit word.
Here are some sample calculations:

■ �1 � 1 � 0: Written in 32-bit format, this becomes 0xffffffff � 0x1 � 0x0, giving the
CPSR value of NZCV � 1001.

■ 0 � 1 � �1: 0x0 � 0x1 � 0xffffffff, with NZCV � 1000.

■ 2 31 � 1 � 1 � �2 31: 0x7fffffff � 0x1 � 0x80000000, with NZCV � 1001.

2.2 ARM Processor 63

The basic form of a data instruction is simple:

ADD r0,r1,r2

This instruction sets register r0 to the sum of the values stored in r1 and r2.
In addition to specifying registers as sources for operands, instructions may also
provide immediate operands, which encode a constant value directly in the
instruction. For example,

ADD r0,r1,#2

sets r0 to r1 � 2.
The major data operations are summarized in Figure 2.9. The arithmetic opera-

tions perform addition and subtraction; the with-carry versions include the current
value of the carry bit in the computation. RSB performs a subtraction with the order
of the two operands reversed,so that RSB r0,r1,r2 sets r0 to be r2 � r1.The bit-wise
logical operations perform logical AND, OR, and XOR operations (the exclusive or
is called EOR). The BIC instruction stands for bit clear: BIC r0, r1, r2 sets r0 to r1
and not r2. This instruction uses the second source operand as a mask:Where a bit
in the mask is 1, the corresponding bit in the first source operand is cleared. The
MUL instruction multiplies two values,but with some restrictions:No operand may
be an immediate,and the two source operands must be different registers.The MLA
instruction performs a multiply-accumulate operation, particularly useful in matrix
operations and signal processing. The instruction

MLA r0,r1,r2,r3

sets r0 to the value r1 � r2 � r3.
The shift operations are not separate instructions—rather, shifts can be applied

to arithmetic and logical instructions. The shift modifier is always applied to the
second source operand. A left shift moves bits up toward the most-significant bits,
while a right shift moves bits down to the least-significant bit in the word. The LSL
and LSR modifiers perform left and right logical shifts, filling the least-significant
bits of the operand with zeroes.The arithmetic shift left is equivalent to an LSL,but
the ASR copies the sign bit—if the sign is 0, a 0 is copied, while if the sign is 1, a
1 is copied. The rotate modifiers always rotate right, moving the bits that fall off
the least-significant bit up to the most-significant bit in the word.The RRX modifier
performs a 33-bit rotate, with the CPSR’s C bit being inserted above the sign bit of
the word; this allows the carry bit to be included in the rotation.

The instructions in Figure 2.10 are comparison operations—they do not modify
general-purpose registers but only set the values of the NZCV bits of the CPSR reg-
ister. The compare instruction CMP r0, r1 computes r0 – r1, sets the status bits, and
throws away the result of the subtraction. CMN uses an addition to set the status bits.
TST performs a bit-wise AND on the operands, while TEQ performs an exclusive-or.

Figure 2.11 summarizes the ARM move instructions. The instruction MOV r0, r1
sets the value of r0 to the current value of r1. The MVN instruction complements
the operand bits (one’s complement) during the move.

64 CHAPTER 2 Instruction Sets

LSL

LSR

ASL

ASR

ROR

RRX

Logical shift left (zero fill)

Logical shift right (zero fill)

Arithmetic shift left

Arithmetic shift right

Rotate right

Rotate right extended with C

AND

ORR

EOR

BIC

Bit-wise and

Bit-wise or

Bit-wise exclusive-or

Bit clear

ADD

ADC

SUB

SBC

RSB

RSC

MUL

MLA

Add with carry

Subtract

Subtract with carry

Reverse subtract

Reverse subtract with carry

Multiply

Multiply and accumulate

Add

Shift/rotate

Logical

Arithmetic

FIGURE 2.9

ARM data instructions.

Values are transferred between registers and memory using the load-store instruc-
tions summarized in Figure 2.12. LDRB and STRB load and store bytes rather than
whole words,while LDRH and SDRH operate on half-words and LDRSH extends the
sign bit on loading. An ARM address may be 32 bits long. The ARM load and store
instructions do not directly refer to main memory addresses, since a 32-bit address
would not fit into an instruction that included an opcode and operands. Instead,the
ARM uses register-indirect addressing. In register-indirect addressing, the value

2.2 ARM Processor 65

CMP Compare

CMN Negated compare

TST Bit-wise test

TEQ Bit-wise negated test

FIGURE 2.10

ARM comparison instructions.

MOV Move

MVN Move negated

FIGURE 2.11

ARM move instructions.

LDR Load

STR Store

LDRH Load half-word

STRH Store half-word

LDRSH Load half-word signed

LDRB Load byte

STRB Store byte

ADR Set register to address

FIGURE 2.12

ARM load-store instructions and pseudo-operations.

stored in the register is used as the address to be fetched from memory; the result
of that fetch is the desired operand value. Thus, as illustrated in Figure 2.13, if we
set r1 � 0 � 100, the instruction

LDR r0,[r1]

sets r0 to the value of memory location 0x100. Similarly, STR r0,[r1] would store
the contents of r0 in the memory location whose address is given in r1. There are
several possible variations:

LDR r0,[r1, – r2]

66 CHAPTER 2 Instruction Sets

03100 0 3 5
0 3 5

0 3 100Data

Address

Memory

CPU

Instruction: LDR r0,[r1]

r1

r0

FIGURE 2.13

Register-indirect addressing in the ARM.

0 3 201

0 3 201 r15

Distance 5 0 3 101

SUB r1, r15,#&101

0 3 5

Memory

0 3 100 FOO

FIGURE 2.14

Computing an absolute address using the PC.

loads r0 from the address given by r1 � r2, while

LDR r0,[r1, #4]

loads r0 from the address r1 � 4.
This begs the question of how we get an address into a register—we need to be

able to set a register to an arbitrary 32-bit value. In the ARM,the standard way to set
a register to an address is by performing arithmetic on the program counter,which
is stored in r15. By adding or subtracting to the PC a constant equal to the distance
between the current instruction (i.e., the instruction that is computing the address)
and the desired location,we can generate the desired address without performing a
load. The ARM programming system provides an ADR pseudo-operation to simplify

2.2 ARM Processor 67

this step. Thus, as shown in Figure 2.14, if we give location 0x100 the name FOO,
we can use the pseudo-operation

ADR r1,FOO

to perform the same function of loading r1 with the address 0x100.
Example 2.2 illustrates how to implement C assignments in ARM instruction.

Example 2.2

C assignments in ARM instructions
We will use the assignments of Figure 2.7. The semicolon (;) begins a comment after an
instruction, which continues to the end of that line. The statement

x � (a � b) � c;
can be implemented by using r0 for a, r1 for b, r2 for c, and r3 for x . We also need registers
for indirect addressing. In this case, we will reuse the same indirect addressing register, r4,
for each variable load. The code must load the values of a, b, and c into these registers before
performing the arithmetic, and it must store the value of x back to memory when it is done.
This code performs the following necessary steps:

ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
ADR r4,b ; get address for b, reusing r4
LDR r1,[r4] ; load value of b
ADD r3,r0,r1 ; set intermediate result for x to a + b
ADR r4,c ; get address for c
LDR r2,[r4] ; get value of c
SUB r3,r3,r2 ; complete computation of x
ADR r4,x ; get address for x
STR r3,[r4] ; store x at proper location

The operation

y � a ∗ (b � c);
can be coded similarly, but in this case we will reuse more registers by using r0 for both a and
b, r1 for c, and r2 for y . Once again, we will use r4 to store addresses for indirect addressing.
The resulting code is

ADR r4,b ; get address for b
LDR r0,[r4] ; get value of b
ADR r4,c ; get address for c
LDR r1,[r4] ; get value of c
ADD r2,r0,r1 ; compute partial result of y
ADR r4,a ; get address for a

68 CHAPTER 2 Instruction Sets

LDR r0,[r4] ; get value of a
MUL r2,r2,r0 ; compute final value of y
ADR r4,y ; get address for y
STR r2,[r4] ; store value of y at proper location

The C statement

z � (a ��2) | (b & 15);
can be coded using r0 for a and z , r1 for b, and r4 for addresses as follows:

ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
MOV r0,r0,LSL 2 ; perform shift
ADR r4,b ; get address for b
LDR r1,[r4] ; get value of b
AND r1,r1,#15 ; perform logical AND
ORR r1,r0,r1 ; compute final value of z
ADR r4,z ; get address for z
STR r1,[r4] ; store value of z

We have already seen three addressing modes: register, immediate, and indirect.
The ARM also supports several forms of base-plus-offset addressing, which is
related to indirect addressing. But rather than using a register value directly as
an address, the register value is added to another value to form the address. For
instance,

LDR r0,[r1,#16]

loads r0 with the value stored at location r1 � 16. Here,r1 is referred to as the base
and the immediate value the offset . When the offset is an immediate, it may have
any value up to 4,096;another register may also be used as the offset.This addressing
mode has two other variations:auto-indexing and post-indexing. Auto-indexing
updates the base register, such that

LDR r0,[r1,#16]!

first adds 16 to the value of r1, and then uses that new value as the address. The
! operator causes the base register to be updated with the computed address so
that it can be used again later. Our examples of base-plus-offset and auto-indexing
instructions will fetch from the same memory location, but auto-indexing will also
modify the value of the base register r1. Post-indexing does not perform the offset
calculation until after the fetch has been performed. Consequently,

LDR r0,[r1],#16

will load r0 with the value stored at the memory location whose address is given by
r1, and then add 16 to r1 and set r1 to the new value. In this case, the post-indexed

2.2 ARM Processor 69

mode fetches a different value than the other two examples, but ends up with the
same final value for r1 as does auto-indexing.

We have used the ADR pseudo-op to load addresses into registers to access vari-
ables because this leads to simple, easy-to-read code (at least by assembly language
standards). Compilers tend to use other techniques to generate addresses, because
they must deal with global variables and automatic variables.

2.2.3 Flow of Control
The B (branch) instruction is the basic mechanism in ARM for changing the flow of
control.The address that is the destination of the branch is often called the branch
target . Branches are PC-relative—the branch specifies the offset from the current
PC value to the branch target. The offset is in words, but because the ARM is byte-
addressable, the offset is multiplied by four (shifted left two bits, actually) to form a
byte address. Thus, the instruction

B #100

will add 400 to the current PC value.
We often wish to branch conditionally,based on the result of a given computation.

The if statement is a common example. The ARM allows any instruction, including
branches, to be executed conditionally. This allows branches to be conditional, as
well as data operations. Figure 2.15 summarizes the condition codes.

EQ Equals zero Z 5 1

NE Not equal to zero Z 5 0

CS Carry set C 5 1

CC Carry clear C 5 0

MI Minus N 5 1

PL Nonnegative (plus) N 5 0

VS Overflow V 51

VC No overflow V 5 0

HI Unsigned higher C 5 1 and Z 5 0

LS Unsigned lower or same C 5 0 or Z 5 1

GE Signed greater than or equal N 5 V

LT Signed less than N V

GT Signed greater than Z 5 0 and N 5 V

LE Signed less than or equal Z 5 1 or N V

FIGURE 2.15

Condition codes in ARM.

70 CHAPTER 2 Instruction Sets

Example 2.3 shows how to implement an if statement.

Example 2.3

Implementing an if statement in ARM
We will use the following if statement as an example:

if (a < b) {
x = 5;
y = c + d;
}

else x = c – d;

The implementation uses two blocks of code, one for the true case and another for the false
case. A branch may either fall through to the true case or branch to the false case:

; compute and test the condition
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
ADR r4,b ; get address for b
LDR r1,[r4] ; get value of b
CMP r0, r1 ; compare a < b
BGE fblock ; if a >= b, take branch

; the true block follows
MOV r0,#5 ; generate value for x
ADR r4,x ; get address for x
STR r0,[r4] ; store value of x
ADR r4,c ; get address for c
LDR r0,[r4] ; get value of c
ADR r4,d ; get address for d
LDR r1,[r4] ; get value of d
ADD r0,r0,r1 ; compute c + d
ADR r4,y ; get address for y
STR r0,[r4] ; store value of y
B after ; branch around the false block

; the false block follows
fblock ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c
ADR r4,d ; get address for d
LDR r1,[r4] ; get value of d
SUB r0,r0,r1 ; compute c – d
ADR r4,x ; get address for x
STR r0,[r4] ; store value of x

after ... ; code after the if statement

2.2 ARM Processor 71

Example 2.4 illustrates an interesting way to implement multiway conditions.

Example 2.4

Implementing the C switch statement in ARM
The switch statement in C takes the following form:

switch (test) {
case 0: ... break;
case 1: ... break;
...
}

The above statement could be coded like an if statement by first testing test � A, then test � B,
and so forth. However, it can be more efficiently implemented by using base-plus-offset
addressing and building what is known as a branch table:

ADR r2,test ; get address for test
LDR r0,[r2] ; load value for test
ADR r1,switchtab ; load address for switch table
LDR r15,[r1,r0,LSL #2]

switchtab DCD case0
DCD case1
...

case0 ... ; code for case 0
...

case1 ... ; code for case 1
...

This implementation uses the value of test as an offset into a table, where the table holds the
addresses for the blocks of code that implement the various cases. The heart of this code is
the LDR instruction, which packs a lot of functionality into a single instruction:

■ It shifts the value of r0 left two bits to turn the offset into a word address.

■ It uses base-plus-offset addressing to add the left-shifted value of test (held in r0) to the
address of the base of the table held in r1.

■ It sets the PC (r15) to the new address computed by the instruction.

Each case is implemented by a block of code that is located elsewhere in memory. The
branch table begins at the location named switchtab. The DCD statement is a way of loading
a 32-bit address into memory at that point, so the branch table holds the addresses of the
starting points of the blocks that correspond to the cases.

The loop is a very common C statement, particularly in signal processing code.
Loops can be naturally implemented using conditional branches. Because loops

72 CHAPTER 2 Instruction Sets

often operate on values stored in arrays, loops are also a good illustration of another
use of the base-plus-offset addressing mode. A simple but common use of a loop
is in the FIR filter, which is explained in Application Example 2.1; the loop-based
implementation of the FIR filter is described in Example 2.5.

Application Example 2.1

FIR filters
A finite impulse response (FIR) filter is a commonly used method for processing signals; we
make use of it in Section 5.11. The FIR filter is a simple sum of products:∑

1≤i≤n

cr xi (2.1)

In use as a filter, the xi s are assumed to be samples of data taken periodically, while the ci s
are coefficients. This computation is usually drawn like this:

c1

x1

c2 c3

x3

c4

f

. . .
x4x2

This representation assumes that the samples are coming in periodically and that the FIR
filter output is computed once every time a new sample comes in. The boxes represent delay
elements that store the recent samples to provide the xi s. The delayed samples are individually
multiplied by the ci s and then summed to provide the filter output.

Example 2.5

An FIR filter for the ARM
The C code for the FIR filter of Application Example 2.1 follows:

for (i = 0, f = 0; i < N; i++)
f = f + c[i] * x[i];

We can address the arrays c and x using base-plus-offset addressing: We will load one register
with the address of the zeroth element of each array and use the register holding i as the offset.

The C language [Ker88] defines a for loop as equivalent to a while loop with proper
initialization and termination. Using that rule, the for loop can be rewritten as

i = 0;
f = 0;

2.2 ARM Processor 73

while (i < N) {
f = f + c[i]*x[i];
i++;

}

Here is the code for the loop:

; loop initiation code
MOV r0,#0 ; use r0 for i, set to 0
MOV r8,#0 ; use a separate index for arrays
ADR r2,N ; get address for N
LDR r1,[r2] ; get value of N for loop termination test
MOV r2,#0 ; use r2 for f, set to 0
ADR r3,c ; load r3 with address of base of c array
ADR r5,x ; load r5 with address of base of x array
; loop body

loop LDR r4,[r3,r8] ; get value of c[i]
LDR r6,[r5,r8] ; get value of x[i]
MUL r4,r4,r6 ; compute c[i]*x[i]
ADD r2,r2,r4 ; add into running sum f
; update loop counter and array index
ADD r8,r8,#4 ; add one word offset to array index
ADD r0,r0,#1 ; add 1 to i
; test for exit
CMP r0,r1
BLT loop ; if i < N, continue loop

loopend...

We have to be careful about numerical accuracy in this type of code, whether it is written in C
or assembly language. The result of a 32-bit � 32-bit multiplication is a 64-bit result. The ARM
MUL instruction leaves the lower 32 bits of the result in the destination register. So long as
the result fits within 32 bits, this is the desired action. If the input values are such that values
can sometimes exceed 32 bits, then we must redesign the code to compute higher-resolution
values.

The other important class of C statement to consider is the function. A C func-
tion returns a value (unless its return type is void); subroutine or procedure are
the common names for such a construct when it does not return a value. Consider
this simple use of a function in C:

x = a + b;
foo(x);
y = c - d;

A function returns to the code immediately after the function call, in this case the
assignment to y.A simple branch is insufficient because we would not know where

74 CHAPTER 2 Instruction Sets

to return. To properly return, we must save the PC value when the procedure/
function is called and, when the procedure is finished, set the PC to the address of
the instruction just after the call to the procedure. (You don’t want to endlessly
execute the procedure,after all.) The branch-and-link instruction is used in theARM
for procedure calls. For instance,

BL foo

will perform a branch and link to the code starting at location foo (using PC-relative
addressing,of course).The branch and link is much like a branch,except that before
branching it stores the current PC value in r14. Thus, to return from a procedure,
you simply move the value of r14 to r15:

MOV r15,r14

You should not, of course, overwrite the PC value stored in r14 during the
procedure.

But this mechanism only lets us call procedures one level deep. If, for exam-
ple, we call a C function within another C function, the second function call will
overwrite r14,destroying the return address for the first function call.The standard
procedure for allowing nested procedure calls (including recursive procedure calls)
is to build a stack,as illustrated in Figure 2.16.The C code shows a series of functions
that call other functions: f1() calls f2(), which in turn calls f3(). The right side of

f3

void f1(int a) {
 f2(a);
}

void f2(int r) {
 f3(r,5);
}

void f3(int x, int y) {
 g 5 x 1 y;
}

main() {
 f1(xyz);
}

C code

f2

f1

Growth

Function call stack

FIGURE 2.16

Nested function calls and stacks.

2.2 ARM Processor 75

the figure shows the state of the procedure call stack during the execution of
f3(). The stack contains one activation record for each active procedure. When
f3() finishes, it can pop the top of the stack to get its return address, leaving the
return address for f2() waiting at the top of the stack for its return.

Most procedures need to pass parameters into the procedure and return values
out of the procedure as well as remember their return address.

We can also use the procedure call stack to pass parameters. The conventions
used to pass values into and out of procedures is known as procedure linkage.
To pass parameters into a procedure, the values can be pushed onto the stack
just before the procedure call. Once the procedure returns, those values must be
popped off the stack by the caller, since they may hide a return address or other
useful information on the stack. A procedure may also need to save register values
for registers it modifies. The registers can be pushed onto the stack upon entry
to the procedure and popped off the stack, restoring the previous values, before
returning.

Example 2.6 illustrates the programming of a simple C function.

Example 2.6

Procedure calls in ARM
We use as an example one of the functions from Figure 2.16:

void f1(int a) {
f2(a);

}

The ARM C compiler’s convention is to use register r13 to point to the top of the stack. We
assume that the argument a has been passed into f1() on the stack and that we must push
the argument for f2 (which happens to be the same value) onto the stack before calling f2().

Here is some handwritten code for f1(), which includes a call to f2():

f1 LDR r0,[r13] ; load value of a argument into r0 from stack
; call f2()
STR r14,[r13]! ; store f1's return address on the stack
STR r0,[r13!] ; store argument to f2 onto stack
BL f2 ; branch and link to f2
; return from f1()
SUB r13,#4 ; pop f2's argument off the stack
LDR r13!,r15 ; restore registers and return

We use base-plus-offset addressing to load the value passed into f1() into a register for use
by r1. To call f2(), we first push f1()’s return address, stored in r14 by the branch-and-link
instruction executed to get into f1(), onto the stack. We then push f2()’s parameter onto the
stack. In both cases, we use autoincrement addressing to both store onto the stack and adjust
the stack pointer. To return, we must first adjust the stack to get rid of f2()’s parameter that

76 CHAPTER 2 Instruction Sets

hides f1()’s return address; we then use autoincrement addressing to pop f1()’s return address
off the stack and into the PC (r15).

We will discuss procedure linkage mechanisms for the ARM in more detail in Section 5.4.2.

2.3 TI C55x DSP
The Texas Instruments C55x DSP is a family of digital signal processors designed
for relatively high performance signal processing. The family extends on previous
generations of TI DSPs; the architecture is also defined to allow several different
implementations that comply with the instruction set.

The C55x,like many DSPs,is an accumulator architecture,meaning that many
arithmetic operations are of the form accumulator � operand � accumulator.
Because one of the operands is the accumulator, it need not be specified in the
instruction. Accumulator-oriented instructions are also well-suited to the types of
operations performed in digital signal processing, such as a1x1 � a2x2 � Of
course, the C55x has more than one register and not all instructions adhere to the
accumulator-oriented format. But we will see that arithmetic and logical operations
take a very different form in the C55x than they do in the ARM.

C55x assembly language programs follow the typical format:

MPY *AR0, *CDP+, AC0
label: MOV #1, T0

Assembler mnemonics are case-insensitive. Instruction mnemonics are formed by
combining a root with prefixes and/or suffixes. For example,theA prefix denotes an
operation performed in addressing mode while the 40 suffix denotes an arithmetic
operation performed in 40-bit resolution. We will discuss the prefixes and suffixes
in more detail when we describe the instructions.

The C55x also allows operations to be specified in an algebraic form:

AC1 = AR0 * coef(*CDP)

2.3.1 Processor and Memory Organization
We will use the term register to mean any type of register in the programmer model
and the term accumulator to mean a register used primarily in the accumulator
style.

The C55x supports several data types:

■ A word is 16 bits long.

■ A longword is 32 bits long.

■ Instructions are byte-addressable.

■ Some instructions operate on addressed bits in registers.

2.3 TI C55x DSP 77

The C55x has a number of registers. Few to none of these registers are general-
purpose registers like those of the ARM. Registers are generally used for specialized
purposes. Because the C55x registers are less regular,we will discuss them by how
they may be used rather than simply listing them.

Most registers are memory-mapped—that is, the register has an address in the
memory space. A memory-mapped register can be referred to in assembly language
in two different ways: either by referring to its mnemonic name or through its
address.

The program counter is PC.The program counter extension register XPC extends
the range of the program counter. The return address register RETA is used for
subroutines.

The C55x has four 40-bit accumulators AC0,AC1,AC2, and AC3. The low-order
bits 0–15 are referred to as AC0L,AC1L,AC2L, and AC3L; the high-order bits 16–31
are referred to as AC0H, AC1H, AC2H, and AC3H; and the guard bits 32–39 are
referred to as AC0G, AC1G, AC2G, and AC3G. (Guard bits are used in numerical
algorithms like signal processing to provide a larger dynamic range for intermediate
calculations.)

The architecture provides six status registers. Three of the status registers,
ST0 and ST1 and the processor mode status register PMST, are inherited from
the C54x architecture. The C55x adds four registers ST0_55, ST1_55, ST2_55,
and ST3_55. These registers provide arithmetic and bit manipulation flags, a data
page pointer and auxiliary register pointer, and processor mode bits, among other
features.

The stack pointer SP keeps track of the system stack. A separate system stack
is maintained through the SSP register. The SPH register is an extended data page
pointer for both SP and SSP.

Eight auxiliary registers AR0�AR7 are used by several types of instructions,
notably for circular buffer operations. The coefficient data pointer CDP is used
to read coefficients for polynomial evaluation instructions; CDPH is the main data
page pointer for the CDP.

The circular buffer size register BK47 is used for circular buffer operations for the
auxiliary registers AR4–7. Four registers define the start of circular buffers: BSA01
for auxiliary registers AR0 and AR1;BSA23 for AR2 and AR3;BSA45 for AR4 and AR5;
BSA67 for AR6 and AR7. The circular buffer size register BK03 is used to address
circular buffers that are commonly used in signal processing. BKC is the circular
buffer size register for CDP. BSAC is the circular buffer coefficient start address
register.

Repeats of single instructions are controlled by the single repeat register CSR.
This counter is the primary interface to the program. It is loaded with the required
number of iterations. When the repeat starts, the value in CSR is copied into the
repeat counter RPTC, which maintains the counts for the current repeat and is
decremented during each iteration.

Several registers are used for block repeats—instructions that are executed sev-
eral times in a row. The block repeat counter BRC0 counts block repeat iterations.

78 CHAPTER 2 Instruction Sets

The block repeat start and end registers RSA0L and REA0L keep track of the start
and end points of the block.

The block repeat register 1 BRC1 and block repeat save register 1 BRS1 are used
to repeat blocks of instructions. There are two repeat start address registers RSA0
and RSA1. Each is divided into low and high parts: RSA0L and RSA0H, for example.

Four temporary registers T0,T1,T2, and T3 are used for various calculations.
Two transition register TRN0 and TRN1 are used for compare-and-extract-

extremum instructions. These instructions are used to implement the Viterbi
algorithm.

Several registers are used for addressing modes. The memory data page start
address registers DP and DPH are used as the base address for data accesses. Similarly,
the peripheral data page start address register PDP is used as a base for I/O addresses.

Several registers control interrupts.The interrupt mask registers 0 and 1,named
IER0 and IER1, determine what interrupts will be recognized. The interrupt flag
registers 0 and 1,named IFR0 and IFR1,keep track of currently pending interrupts.
Two other registers,DBIER0 and DBIER1,are used for debugging.Two registers, the
interrupt vector register DSP (IVPD) and interrupt vector register host (IVPH) are
used as the base address for the interrupt vector table.

The C55x registers are summarized in Figure 2.17.
The C55x supports a 24-bit address space,providing 16 MB of memory as shown

in Figure 2.18. Data,program,and I/O accesses are all mapped to the same physical
memory. But these three spaces are addressed in different ways.The program space
is byte-addressable, so an instruction reference is 24-bit long. Data space is word-
addressable, so a data address is 23 bits. (Its least-significant bit is set to 0.)The data
space is also divided into 128 pages of 64K words each.The I/O space is 64K words
wide, so an I/O address is 16 bits. The situation is summarized in Figure 2.19.

Not all implementations of the C55x may provide all 16 MB of memory on chip.
The C5510, for example,provides 352 KB of on-chip memory.The remainder of the
memory space is provided by separate memory chips connected to the DSP.

The first 96 words of data page 0 are reserved for the memory-mapped registers.
Since the program space is byte-addressable,unlike the word-addressable data space,
the first 192 words of the program space are reserved for those same registers.

2.3.2 Addressing Modes
The C55x has three addressing modes:

■ Absolute addressing supplies an address in the instruction.

■ Direct addressing supplies an offset.

■ Indirect addressing uses a register as a pointer.

Absolute addresses may be any of three different types:

■ A k16 absolute address is a 16-bit value that is combined with the DPH register
to form a 23-bit address.

2.3 TI C55x DSP 79

register mnemonic description

AC0-AC3 accumulators

AR0-AR7, XAR0- auxiliary registers and extensions of auxiliary registers
XAR7

BK03, BK47, BKC circular buffer size registers

BRC0-BRC1 block repeat counters

BRS1 BRC1 save register

CDP, CDPH, CDPX coefficient data register: low (CDP), high (CDPH), full (CDPX)

CFCT control flow context register

CSR computed single repeat register

DBIER0-DBIER1 debug interrupt enable registers

DP, DPH, DPX data page register: low (DP), high (DPH), full (DPX)

IER0-IER1 interrupt enable registers

IFR0-IFR1 interrupt flag registers

IVPD, IVPH interrupt vector registers

PC, XPC program counter and program counter extension

PDP peripheral data page register

RETA return address register

RPTC single repeat counter

RSA0-RSA1 block repeat start address registers

FIGURE 2.17

Registers in the TI C55x.

■ A k23 absolute address is a 23-bit unsigned number that provides a full data
address.

■ An I/O absolute address is of the form port (#1234), where the argument to
port() is a 16-bit unsigned value that provides the address in the I/O space.

Direct addresses may be any of four different types:

■ DP addressing is used to access data pages. The address is calculated as

ADP � DPH[22 :15]|(DP � Doffset). (2.2)

80 CHAPTER 2 Instruction Sets

program
space

16 Mbytes
(24 bit address)

8 bits

data space8 Mwords
(23 bit address)

16 bits

I/O space64 kwords
(16 bit address)

16 bits

FIGURE 2.18

Address spaces in the TMS320C55x.

main data page 0

main data page 1

main data page 2

main data page 127

memory
mapped
registers

FIGURE 2.19

The C55x memory map.

Doffset is calculated by the assembler; its value depends on whether you are
accessing a data page value or a memory-mapped register.

■ SP addressing is used to access stack values in the data memory. The address
is calculated as

ASP � SPH[22 :15]|(SP � Soffset). (2.3)

2.3 TI C55x DSP 81

Soffset is an offset supplied by the programmer.

■ Register-bit direct addressing accesses bits in registers.The argument @bitoff-
set is an offset from the least-significant bit of the register. Only a few
instructions (register test, set, clear, complement) support this mode.

■ PDP addressing is used to access I/O pages.The 16-bit address is calculated as

APDP � PDP[15 : 6]|PDPoffset. (2.4)

■ The PDPoffset identifies the word within the I/O page. This addressing mode
is specified with the port() qualifier.

Indirect addresses may be any of four different types:

■ AR indirect addressing uses an auxiliary register to point to data.This address-
ing mode is further subdivided into accesses into data, register bits, and I/O.
To access a data page, the AR supplies the bottom 16 bits of the address and
the top 7 bits are supplied by the top bits of the XAR register. For register
bits, the AR supplies a bit number. (As with register-bit direct addressing, this
only works on the register bit instructions.) When accessing the I/O space,
the AR supplies a 16-bit I/O address. This mode may update the value of the
AR register. Updates are specified by modifiers to the register identifier, such
as adding � after the register name. Furthermore, the types of modifications
allowed depend upon the ARMS bit of status register ST2_55:0 for DSP mode,
1 for control mode. A large number of such updates are possible: examples
include *ARn�, which adds 1 to the register for a 16-bit operation and 2 to
the register for a 32-bit operation;*(ARn �AR0) writes the value ofARn �AR0
into ARn.

■ Dual AR indirect addressing allows two simultaneous data accesses, either for
an instruction that requires two accesses or for executing two instructions in
parallel. Depending on the modifiers to the register ID, the register value may
be updated.

■ CDP indirect addressing uses the CDP register to access coefficients that
may be in data space, register bits, or I/O space. In the case of data space
accesses, the top 7 bits of the address come from CDPH and the bottom 16
come from the CDP. For register bits, the CDP provides a bit number. For
I/O space accesses specified with port(), the CDP gives a 16 bit I/O address.
Depending on the modifiers to the register ID, the CDP register value may be
updated.

■ Coefficient indirect addressing is similar to CDP indirect mode, but is used
primarily for instructions that require three memory operands per cycle.

Any of the indirect addressing modes may use circular addressing,which is handy
for many DSP operations. Circular addressing is specified with theARnLC bit in status

82 CHAPTER 2 Instruction Sets

register ST2_55. For example, if bit AR0LC � 1, then the main data page is supplied
by AR0H, the buffer start register is BSA01, and the buffer size register is BK03.

The C55x supports two stacks:one for data and one for the system. Each stack is
addressed by a 16-bit address. These two stacks can be relocated to different spots
in the memory map by specifying a page using the high register: SP and SPH form
XSP, the extended data stack; SSP and SPH form XSSP, the extended system stack.
Note that both SP and SSP share the same page register SPH. XSP and XSSP hold
23-bit addresses that correspond to data locations.

The C55x supports three different stack configurations. These configurations
depend on how the data and system stacks relate and how subroutine returns are
implemented.

■ In a dual 16-bit stack with fast return configuration,the data and system stacks
are independent. A push or pop on the data stack does not affect the system
stack. The RETA and CFCT registers are used to implement fast subroutine
returns.

■ In a dual 16-bit stack with slow return configuration, the data and system
stacks are independent. However, RETA and CFCT are not used for slow sub-
routine returns; instead, the return address and loop context are stored on
the stack.

■ In a 32-bit stack with slow return configuration,SP and SSP are both modified
by the same amount on any stack operation.

2.3.3 Data Operations
The MOV instruction moves data between registers and memory:

MOV src,dst

A number of variations of MOV are possible. The instruction can be used to move
from memory into a register, from a register to memory, between registers, or from
one memory location to another.

TheADD instruction adds a source and destination together and stores the result
in the destination:

ADD src,dst

This instruction produces dst � dst � src.The destination may be an accumulator or
another type.Variants allow constants to be added to the destination. Other variants
allow the source to be a memory location. The addition may also be performed on
two accumulators, one of which has been shifted by a constant number of bits.
Other variations are also defined.

A dual addition performs two adds in parallel:

ADD dual(Lmem),ACx,ACy

2.3 TI C55x DSP 83

This instruction performs HI(ACy) � HI(Lmem) � HI(ACx) and LO(ACy) �
LO(Lmem) � LO(ACx). The operation is performed in 40-bit mode, but the lower
16 and upper 24 bits of the result are separated.

The MPY instruction performs an integer multiplication:

MPY src,dst

Multiplications are performed on 16-bit values. Multiplication may be performed
on accumulators, temporary registers,constants,or memory locations.The memory
locations may be addressed either directly or using the coefficient addressing mode.

A multiply and accumulate is performed by the MAC instruction. It takes the
same basic types of operands as does MPY. In the form

MAC ACx,Tx,ACy

the instruction performs ACy �ACy � (ACx � Tx).
The compare instruction compares two values and sets a test control flag:

CMP Smem == val, TC1

The memory location is compared to a constant value. TC1 is set if the two are
equal and cleared if they are not equal.

The compare instruction can also be used to compare registers:

CMP src RELOP dst, TC1

The two registers can be compared using a variety of relational operators RELOP.
If the U suffix is used on the instruction, the comparison is performed unsigned.

2.3.4 Flow of Control
The B instruction is an unconditional branch. The branch target may be defined by
the low 24 bits of an accumulator

B ACx

or by an address label

B label

The BCC instruction is a conditional branch:

BCC label, cond

The condition code determines the condition to be tested. Condition codes
specify registers and the tests to be performed on them:

■ Test the value of an accumulator: �0, ��0, �0, ��0, � 0, !�0.

■ Test the value of the accumulator overflow status bit.

84 CHAPTER 2 Instruction Sets

■ Test the value of an auxiliary register: �0, ��0, �0, ��0, � 0, !�0.

■ Test the carry status bit.

■ Test the value of a temporary register: �0, ��0, �0, ��0, � 0, !�0.

■ Test the control flags against 0 (condition prefixed by !) or against 1 (not
prefixed by !) for combinations of AND, OR, and NOT.

The C55x allows an instruction or a block of instructions to be repeated. Repeats
provide efficient implementation of loops. Repeats may also be nested to provide
two levels of repeats.

A single-instruction repeat is controlled by two registers. The single-repeat
counter, RPTC, counts the number of additional executions of the instruction to
be executed; if RPTC � N, then the instruction is executed a total of N � 1 times.
A repeat with a computed number of iterations may be performed using the com-
puted single-repeat register CSR. The desired number of operations is computed
and stored in CSR; the value of CSR is then copied into RPTC at the beginning of
the repeat.

Block repeats perform a repeat on a block of contiguous instructions. A level 0
block repeat is controlled by three registers: the block repeat counter 0, BRC0,
holds the number of times after the initial execution to repeat the instruction;
the block repeat start address register 0, RSA0, holds the address of the first
instruction in the repeat block; the repeat end address register 0, REA0, holds the
address of the last instruction in the repeat block. (Note that, as with a single
instruction repeat, if BRCn’s value is N, then the instruction or block is executed
N � 1 times.)

A level 1 block repeat uses BRC1, RSA1, and REA1. It also uses BRS1, the block
repeat save register 1. Each time that the loop repeats, BRC1 is initialized with the
value from BRS1. Before the block repeat starts,a load to BRC1 automatically copies
the value to BRS1 to be sure that the right value is used for the inner loop executions.

An unconditional subroutine call is performed by the CALL instruction:

CALL target

The target of the call may be a direct address or an address stored in an accumulator.
Subroutines make use of the stack. A subroutine call stores two important registers:
the return address and the loop context register. Both these values are pushed onto
the stack.

A conditional subroutine call is coded as:

CALLCC adrs,cond

The address is a direct address; an accumulator value may not be used as the sub-
routine target.The conditional is the same as with other conditional instructions.As
with the unconditional CALL, CALLCC stores the return address and loop context
register on the stack.

2.3 TI C55x DSP 85

The C55x provides two types of subroutine returns: fast-return and slow-
return. These vary on where they store the return address and loop context. In a
slow return, the return address and loop context are stored on the stack. In a fast
return, these two values are stored in registers: the return address register and the
control flow context register.

Interrupts use the basic subroutine call mechanism. They are processed in
four phases:

1. The interrupt request is received.

2. The interrupt request is acknowledged.

3. Prepare for the interrupt service routine by finishing execution of the current
instruction, storing registers, and retrieving the interrupt vector.

4. Processing the interrupt service routine,which concludes with a return-from-
interrupt instruction.

The C55x supports 32 interrupt vectors.
Interrupts may be prioritized into 27 levels. The highest-priority interrupt is a

hardware and software reset.
Most of the interrupts may be masked using the interrupt flag registers IFR1 and

IFR2. Interrupt vectors 2–23, the bus error interrupt, the data log interrupt, and the
real-time operating system interrupt can all be masked.

2.3.5 C Coding Guidelines
Some coding guidelines for the C55x [Tex01] not only provide more efficient code
but in some cases should be paid attention to in order to ensure that the generated
code is correct.

As with all digital signal processing code, the C55x benefits from careful atten-
tion to the required sizes of variables. The C55x compiler uses some non-standard
lengths of data types: char, short, and int are all 16 bits; long is 32 bits; and long
long is 40 bits. The C55x uses IEEE formats for float (32 bits) and double (64 bits).
C code should not assume that int and long are the same types, that char is 8 bits
long or that long is 64 bits. The int type should be used for fixed-point arithmetic,
especially multiplications, and for loop counters.

The C55x compiler makes some important assumptions about operands of mul-
tiplications.This code generates a 32-bit result from the multiplication of two 16-bit
operands:

long result = (long)(int)src1 * (long)(int)src2;

Although the operands were coerced to long,the compiler notes that each is 16 bits,
so it uses a single-instruction multiplication.

The order of instructions in the compiled code depends in part on the C55x
pipeline characteristics.The C compiler schedules code to minimize code conflicts

86 CHAPTER 2 Instruction Sets

and to take advantage of parallelism wherever possible. However, if the compiler
cannot determine that a set of instructions are independent,it must assume that they
are dependent and generate more restrictive,slower code.The restrict keyword can
be used to tell the compiler that a given pointer is the only one in the scope that can
point to a particular object. The -pm option allows the compiler to perform more
global analysis and find more independent sets of instructions.

SUMMARY
When viewed from high above, all CPUs are similar—they read and write memory,
perform data operations, and make decisions. However, there are many ways to
design an instruction set, as illustrated by the differences between the ARM and the
C55x. When designing complex systems, we generally view the programs in high-
level language form,which hides many of the details of the instruction set. However,
differences in instruction sets can be reflected in nonfunctional characteristics,such
as program size and speed.

What We Learned

■ Both the von Neumann and Harvard architectures are in common use today.

■ The programming model is a description of the architecture relevant to
instruction operation.

■ ARM is a load-store architecture. It provides a few relatively complex instruc-
tions, such as saving and restoring multiple registers.

■ The C55x provides a number of architectural features to support the arithmetic
loops that are common on digital signal processing code.

FURTHER READING
Books by Jaggar [Jag95] and Furber [Fur96] describe the ARM architecture. The
ARM Web site, www.arm.com, contains a large number of documents describing
various versions of ARM.

QUESTIONS
Q2-1 What is the difference between a big-endian and little-endian data

representation?

Q2-2 What is the difference between the Harvard and von Neumann
architectures?

Questions 87

Q2-3 Answer the following questions about the ARM programming model:

a. How many general-purpose registers are there?

b. What is the purpose of the CPSR?

c. What is the purpose of the Z bit?

d. Where is the program counter kept?

Q2-4 How would the ARM status word be set after these operations?

a. 2 � 3

b. �232 � 1 � 1

c. �4 � 5

Q2-5 Write ARM assembly code to implement the following C assignments:

a. x � a � b;

b. y � (c � d) � (e � f);

c. z � a∗(b � c) � d∗e;

Q2-6 What is the meaning of these ARM condition codes?

a. EQ

b. NE

c. MI

d. VS

e. GE

f. LT

Q2-7 Write ARM assembly code to first read and then write a device memory
mapped to location 0x2100.

Q2-8 Write in ARM assembly language an interrupt handler that reads a single
character from the device at location 0x2200.

Q2-9 Write ARM assembly code to implement the following C conditional:

if (x – y < 3) {
a = b – c;
x = 0;
}

else {
y = 0;
d = e + f + g;
}

88 CHAPTER 2 Instruction Sets

Q2-10 Write ARM assembly language code for the following loops:

a. for (i = 0; i < 20; i++)

z[i] = a[i]*b[i];

b. for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)

z[i] = a[i,j] * b[i]

Q2-11 Explain the operation of the BL instruction, including the state of ARM
registers before and after its operation.

Q2-12 How do you return from an ARM procedure?

Q2-13 In the following code, show the contents of the ARM function call stack
just after each C function has been entered and just after the function
exits. Assume that the function call stack is empty when main() begins.

int foo(int x1, int x2) {
return x1 + x2;

}

int baz(int x1) {
return x1 + 1;

}

void scum(int r) {
for (i = 0; i = 2; i++)

foo(r + i,5);
}

main() {
scum(3);
baz(2);

}

Q2-14 What data types does the C55x support?

Q2-15 How many accumulators does the C55x have?

Q2-16 What C55x register holds arithmetic and bit manipulation flags?

Q2-17 What is a block repeat in the C55x?

Q2-18 How are the C55x data and program memory arranged in the physical
memory?

Lab Exercises 89

Q2-19 Where are C55x memory-mapped registers located in the address space?

Q2-20 What is the AR register used for in the C55x?

Q2-21 What is the difference between DP and PDP addressing modes in the
C55x?

Q2-22 How many stacks are supported by the C55x architecture and how are
their locations in memory determined?

Q2-23 What register controls single-instruction repeats in the C55x?

Q2-24 What is the difference between slow and fast returns in the C55x?

LAB EXERCISES
L2-1 Write a program that uses a circular buffer to perform FIR filtering.

L2-2 Write a simple loop that lets you exercise the cache. By changing the number
of statements in the loop body, you can vary the cache hit rate of the loop as
it executes. You should be able to observe changes in the speed of execution
by observing the microprocessor bus.

This page intentionally left blank

CHAPTER

3CPUs
■ Input and output mechanisms.

■ Supervisor mode, exceptions, and traps.

■ Memory management and address translation.

■ Caches.

■ Performance and power consumption of CPUs.

INTRODUCTION
This chapter describes aspects of CPUs that do not directly relate to their instruction
sets. We consider a number of mechanisms that are important to interfacing to
other system elements, such as interrupts and memory management. We also take a
first look at aspects of the CPU other than functionality—performance and power
consumption are both very important attributes of programs that are only indirectly
related to the instructions they use.

In Section 3.1, we study input and output mechanisms such as interrupts.
Section 3.2 introduces several mechanisms that are similar to interrupts but are
designed to handle internal events. Section 3.3 introduces co-processors that
provide optional support for parts of the instruction set. Section 3.4 describes
memory systems—both memory management and caches. The next sections look
at nonfunctional attributes of execution: Section 3.5 looks at performance, while
Section 3.6 considers power consumption. Finally, in Section 3.7 we use a data
compressor as an example of a simple yet interesting program.

3.1 PROGRAMMING INPUT AND OUTPUT
The basic techniques for I/O programming can be understood relatively indepen-
dent of the instruction set. In this section, we cover the basics of I/O program-
ming and place them in the contexts of both the ARM and C55x. We begin by
discussing the basic characteristics of I/O devices so that we can understand the
requirements they place on programs that communicate with them.

91

92 CHAPTER 3 CPUs

Status
register

Data
register

Device
mechanism

CPU

FIGURE 3.1

Structure of a typical I/O device.

3.1.1 Input and Output Devices
Input and output devices usually have some analog or nonelectronic component—
for instance, a disk drive has a rotating disk and analog read/write electronics. But
the digital logic in the device that is most closely connected to the CPU very strongly
resembles the logic you would expect in any computer system.

Figure 3.1 shows the structure of a typical I/O device and its relationship to the
CPU.The interface between the CPU and the device’s internals (e.g.,the rotating disk
and read/write electronics in a disk drive) is a set of registers. The CPU talks to the
device by reading and writing the registers. Devices typically have several registers:

■ Data registers hold values that are treated as data by the device, such as the
data read or written by a disk.

■ Status registers provide information about the device’s operation, such as
whether the current transaction has completed.

Some registers may be read-only,such as a status register that indicates when the
device is done, while others may be readable or writable. Application Example 3.1
describes a classic I/O device.

Application Example 3.1

The 8251 UART
The 8251 UART (Universal Asynchronous Receiver/Transmitter) [Int82] is the original device
used for serial communications, such as the serial port connections on PCs. The 8251 was
introduced as a stand-alone integrated circuit for early microprocessors. Today, its functions
are typically subsumed by a larger chip, but these more advanced devices still use the basic
programming interface defined by the 8251.

3.1 Programming Input and Output 93

The UART is programmable for a variety of transmission and reception parameters.
However, the basic format of transmission is simple. Data are transmitted as streams of
characters, each of which has the following form:

Bit 0 Bit n–1

Time

Start
bit

Stop bit
. . .

Every character starts with a start bit (a 0) and a stop bit (a 1). The start bit allows the receiver
to recognize the start of a new character; the stop bit ensures that there will be a transition at
the start of the stop bit. The data bits are sent as high and low voltages at a uniform rate. That
rate is known as the baud rate; the period of one bit is the inverse of the baud rate.

Before transmitting or receiving data, the CPU must set the UART’s mode registers to
correspond to the data line’s characteristics. The parameters for the serial port are familiar
from the parameters for a serial communications program (such as Kermit):

■ the baud rate;

■ the number of bits per character (5 through 8);

■ whether parity is to be included and whether it is even or odd; and

■ the length of a stop bit (1, 1.5, or 2 bits).

The UART includes one 8-bit register that buffers characters between the UART and the
CPU bus. The Transmitter Ready output indicates that the transmitter is ready to accept a
data character; the Transmitter Empty signal goes high when the UART has no characters to
send. On the receiver side, the Receiver Ready pin goes high when the UART has a character
ready to be read by the CPU.

3.1.2 Input and Output Primitives
Microprocessors can provide programming support for input and output in two
ways: I/O instructions and memory-mapped I/O. Some architectures, such as
the Intel x86, provide special instructions (in and out in the case of the Intel x86)
for input and output. These instructions provide a separate address space for I/O
devices.

But the most common way to implement I/O is by memory mapping—even
CPUs that provide I/O instructions can also implement memory-mapped I/O. As
the name implies, memory-mapped I/O provides addresses for the registers in
each I/O device. Programs use the CPU’s normal read and write instructions
to communicate with the devices. Example 3.1 illustrates memory-mapped I/O
on the ARM.

94 CHAPTER 3 CPUs

Example 3.1

Memory-mapped I/O on ARM
We can use the EQU pseudo-op to define a symbolic name for the memory location of our I/O
device:

DEV1 EQU 0x1000

Given that name, we can use the following standard code to read and write the device
register:

LDR r1,#DEV1 ; set up device address
LDR r0,[r1] ; read DEV1
LDR r0,#8 ; set up value to write
STR r0,[r1] ; write 8 to device

How can we directly write I/O devices in a high-level language like C? When we
define and use a variable in C,the compiler hides the variable’s address from us. But
we can use pointers to manipulate addresses of I/O devices. The traditional names
for functions that read and write arbitrary memory locations are peek and poke.
The peek function can be written in C as:

int peek(char *location) {
return *location; /* de-reference location pointer */

}

The argument to peek is a pointer that is de-referenced by the C * operator to
read the location. Thus, to read a device register we can write:

#define DEV1 0x1000
...
dev_status = peek(DEV1); /* read device register */

The poke function can be implemented as:

void poke(char *location, char newval) {
(*location) = newval; /* write to location */

}

To write to the status register, we can use the following code:

poke(DEV1,8); /* write 8 to device register */

These functions can, of course, be used to read and write arbitrary memory
locations, not just devices.

3.1 Programming Input and Output 95

3.1.3 Busy-Wait I/O
The most basic way to use devices in a program is busy-wait I/O. Devices are
typically slower than the CPU and may require many cycles to complete an opera-
tion. If the CPU is performing multiple operations on a single device,such as writing
several characters to an output device, then it must wait for one operation to com-
plete before starting the next one. (If we try to start writing the second character
before the device has finished with the first one, for example, the device will prob-
ably never print the first character.) Asking an I/O device whether it is finished by
reading its status register is often called polling.

Example 3.2 illustrates busy-wait I/O.

Example 3.2

Busy-wait I/O programming
In this example we want to write a sequence of characters to an output device. The device
has two registers: one for the character to be written and a status register. The status register’s
value is 1 when the device is busy writing and 0 when the write transaction has completed.

We will use the peek and poke functions to write the busy-wait routine in C. First, we define
symbolic names for the register addresses:

#define OUT_CHAR 0x1000 /* output device character register */
#define OUT_STATUS 0x1001 /* output device status register */

The sequence of characters is stored in a standard C string, which is terminated by a
null (0) character. We can use peek and poke to send the characters and wait for each
transaction to complete:

char *mystring = "Hello, world." /* string to write */
char *current_char; /* pointer to current position in

string */
current_char = mystring; /* point to head of string */
while (*current_char != `\ 0') { /* until null character */

poke(OUT_CHAR,*current_char); /* send character to
device */

while (peek(OUT_STATUS) != 0); /* keep checking
status */

current_char++; /* update character pointer */
}

The outer while loop sends the characters one at a time. The inner while loop checks the
device status—it implements the busy-wait function by repeatedly checking the device status
until the status changes to 0.

96 CHAPTER 3 CPUs

Example 3.3 illustrates a combination of input and output.

Example 3.3

Copying characters from input to output using busy-wait I/O
We want to repeatedly read a character from the input device and write it to the output device.
First, we need to define the addresses for the device registers:

#define IN_DATA 0x1000
#define IN_STATUS 0x1001
#define OUT_DATA 0x1100
#define OUT_STATUS 0x1101

The input device sets its status register to 1 when a new character has been read; we must
set the status register back to 0 after the character has been read so that the device is ready
to read another character. When writing, we must set the output status register to 1 to start
writing and wait for it to return to 0. We can use peek and poke to repeatedly perform the
read/write operation:

while (TRUE) { /* perform operation forever */
/* read a character into achar */
while (peek(IN_STATUS) == 0); /* wait until ready */
achar = (char)peek(IN_DATA); /* read the character */
/* write achar */
poke(OUT_DATA,achar);
poke(OUT_STATUS,1); /* turn on device */
while (peek(OUT_STATUS) != 0); /* wait until done */

}

3.1.4 Interrupts
Basics
Busy-wait I/O is extremely inefficient—the CPU does nothing but test the device
status while the I/O transaction is in progress. In many cases, the CPU could do
useful work in parallel with the I/O transaction, such as:

■ computation, as in determining the next output to send to the device or
processing the last input received, and

■ control of other I/O devices.

To allow parallelism, we need to introduce new mechanisms into the CPU.
The interrupt mechanism allows devices to signal the CPU and to force execu-

tion of a particular piece of code. When an interrupt occurs, the program counter’s
value is changed to point to an interrupt handler routine (also commonly known

3.1 Programming Input and Output 97

as a device driver) that takes care of the device:writing the next data,reading data
that have just become ready, and so on. The interrupt mechanism of course saves
the value of the PC at the interruption so that the CPU can return to the program
that was interrupted. Interrupts therefore allow the flow of control in the CPU to
change easily between different contexts, such as a foreground computation and
multiple I/O devices.

As shown in Figure 3.2, the interface between the CPU and I/O device includes
the following signals for interrupting:

■ the I/O device asserts the interrupt request signal when it wants service
from the CPU; and

■ the CPU asserts the interrupt acknowledge signal when it is ready to handle
the I/O device’s request.

The I/O device’s logic decides when to interrupt;for example,it may generate an
interrupt when its status register goes into the ready state.The CPU may not be able
to immediately service an interrupt request because it may be doing something else
that must be finished first—for example, a program that talks to both a high-speed
disk drive and a low-speed keyboard should be designed to finish a disk transaction
before handling a keyboard interrupt. Only when the CPU decides to acknowledge
the interrupt does the CPU change the program counter to point to the device’s
handler. The interrupt handler operates much like a subroutine, except that it is
not called by the executing program. The program that runs when no interrupt
is being handled is often called the foreground program; when the interrupt
handler finishes, it returns to the foreground program, wherever processing was
interrupted.

Status
register

Data
register

Device
mechanism

Interrupt request

Data/address

Interrupt acknowledgePC
CPU

Device

FIGURE 3.2

The interrupt mechanism.

98 CHAPTER 3 CPUs

Before considering the details of how interrupts are implemented, let’s look
at the interrupt style of processing and compare it to busy-wait I/O. Example 3.4
uses interrupts as a basic replacement for busy-wait I/O; Example 3.5 takes a more
sophisticated approach that allows more processing to happen concurrently.

Example 3.4

Copying characters from input to output with basic interrupts
As with Example 3.3, we repeatedly read a character from an input device and write it to an
output device. We assume that we can write C functions that act as interrupt handlers. Those
handlers will work with the devices in much the same way as in busy-wait I/O by reading and
writing status and data registers. The main difference is in handling the output—the interrupt
signals that the character is done, so the handler does not have to do anything.

We will use a global variable achar for the input handler to pass the character to the
foreground program. Because the foreground program doesn’t know when an interrupt occurs,
we also use a global Boolean variable, gotchar, to signal when a new character has been
received. The code for the input and output handlers follows:

void input_handler() { /* get a character and put in
global */

achar = peek(IN_DATA); /* get character */
gotchar = TRUE; /* signal to main program */
poke(IN_STATUS,0); /* reset status to initiate next

transfer */
}
void output_handler() { /* react to character being sent */

/* don't have to do anything */
}

The main program is reminiscent of the busy-wait program. It looks at gotchar to check
when a new character has been read and then immediately sends it out to the output
device.

main() {
while (TRUE) { /* read then write forever */

if (gotchar) { /* write a character */
poke(OUT_DATA,achar); /* put character

in device */
poke(OUT_STATUS,1); /* set status to

initiate write */
gotchar = FALSE; /* reset flag */

}
}

}

3.1 Programming Input and Output 99

The use of interrupts has made the main program somewhat simpler. But this program
design still does not let the foreground program do useful work. Example 3.5 uses a more
sophisticated program design to let the foreground program work completely independently
of input and output.

Example 3.5

Copying characters from input to output with interrupts and buffers
Because we do not need to wait for each character, we can make this I/O program more
sophisticated than the one in Example 3.4. Rather than reading a single character and then
writing it, the program performs reads and writes independently. The read and write routines
communicate through the following global variables:

■ A character string io_buf will hold a queue of characters that have been read but not
yet written.

■ A pair of integers buf_start and buf_end will point to the first and last characters read.

■ An integer error will be set to 0 whenever io_buf overflows.

The global variables allow the input and output devices to run at different rates. The queue
io_buf acts as a wraparound buffer—we add characters to the tail when an input is received
and take characters from the tail when we are ready for output. The head and tail wrap around
the end of the buffer array to make most efficient use of the array. Here is the situation at the
start of the program’s execution, where the tail points to the first available character and the
head points to the ready character. As seen below, because the head and tail are equal, we
know that the queue is empty.

Head Tail

When the first character is read, the tail is incremented after the character is added to the
queue, leaving the buffer and pointers looking like the following:

Head Tail

a

100 CHAPTER 3 CPUs

When the buffer is full, we leave one character in the buffer unused. As the next figure shows,
if we added another character and updated the tail buffer (wrapping it around to the head of
the buffer), we would be unable to distinguish a full buffer from an empty one.

a b c d e f g

Head Tail

Here is what happens when the output goes past the end of io_buf:

b c d e f g h

Tail Head

The following code provides the declarations for the above global variables and some
service routines for adding and removing characters from the queue. Because interrupt
handlers are regular code, we can use subroutines to structure code just as with any
program.

#define BUF_SIZE 8
char io_buf[BUF_SIZE]; /* character buffer */
int buf_head = 0, buf_tail = 0; /* current position in

buffer */
int error = 0; /* set to 1 if buffer ever overflows */

void empty_buffer() { /* returns TRUE if buffer is empty */
buf_head == buf_tail;

}

void full_buffer() { /* returns TRUE if buffer is full */
(buf_tail+1) % BUF_SIZE == buf_head ;

}

int nchars() { /* returns the number of characters in the
buffer */

if (buf_head >= buf_tail) return buf_tail – buf_head;
else return BUF_SIZE + buf_tail – buf_head;

}

void add_char(char achar) { /* add a character to the buffer
head */

3.1 Programming Input and Output 101

io_buf[buf_tail++] = achar;
/* check pointer */
if (buf_tail == BUF_SIZE)

buf_tail = 0;
}

char remove_char() { /* take a character from the buffer
head */

char achar;
achar = io_buf[buf_head++];
/* check pointer */
if (buf_head == BUF_SIZE)

buf_head = 0;
}

Assume that we have two interrupt handling routines defined in C, input_handler for the
input device and output_handler for the output device. These routines work with the device
in much the same way as did the busy-wait routines. The only complication is in starting
the output device: If io_buf has characters waiting, the output driver can start a new output
transaction by itself. But if there are no characters waiting, an outside agent must start a new
output action whenever the new character arrives. Rather than force the foreground program
to look at the character buffer, we will have the input handler check to see whether there is
only one character in the buffer and start a new transaction.

Here is the code for the input handler:

#define IN_DATA 0x1000
#define IN_STATUS 0x1001
void input_handler() {

char achar;
if (full_buffer()) /* error */

error = 1;
else { /* read the character and update pointer */

achar = peek(IN_DATA); /* read character */
add_char(achar); /* add to queue */

}
poke(IN_STATUS,0); /* set status register back to 0 */
/* if buffer was empty, start a new output

transaction */
if (nchars() == 1) { /* buffer had been empty until

this interrupt */
poke(OUT_DATA,remove_char()); /* send

character */
poke(OUT_STATUS,1); /* turn device on */

}
}

102 CHAPTER 3 CPUs

#define OUT_DATA 0x1100
#define OUT_STATUS 0x1101
void output_handler() {

if (!empty_buffer()) { /* start a new character */
poke(OUT_DATA,remove_char()); /* send character */
poke(OUT_STATUS,1); /* turn device on */

}
}

The foreground program does not need to do anything—everything is taken care of by
the interrupt handlers. The foreground program is free to do useful work as it is occasionally
interrupted by input and output operations. The following sample execution of the program
in the form of a UML sequence diagram shows how input and output are interleaved with
the foreground program. (We have kept the last input character in the queue until output is
complete to make it clearer when input occurs.) The simulation shows that the foreground
program is not executing continuously, but it continues to run in its regular state independent
of the number of characters waiting in the queue.

:Foreground :Input :Output :Queue

a

b

bc

cd

d

c

Time
empty

empty

empty

3.1 Programming Input and Output 103

Interrupts allow a lot of concurrency, which can make very efficient use of the
CPU. But when the interrupt handlers are buggy, the errors can be very hard to
find. The fact that an interrupt can occur at any time means that the same bug
can manifest itself in different ways when the interrupt handler interrupts different
segments of the foreground program. Example 3.6 illustrates the problems inherent
in debugging interrupt handlers.

Example 3.6

Debugging interrupt code
Assume that the foreground code is performing a matrix multiplication operation y � Ax � b:

for (i = 0; i < M; i++) {
y[i] = b[i];
for (j = 0; j < N; j++)

y[i] = y[i] + A[i,j]*x[j];
}

We use the interrupt handlers of Example 3.5 to perform I/O while the matrix compu-
tation is performed, but with one small change: read_handler has a bug that causes it to
change the value of j . While this may seem far-fetched, remember that when the interrupt
handler is written in assembly language such bugs are easy to introduce. Any CPU register
that is written by the interrupt handler must be saved before it is modified and restored
before the handler exits. Any type of bug—such as forgetting to save the register or to
properly restore it—can cause that register to mysteriously change value in the foreground
program.

What happens to the foreground program when j changes value during an interrupt
depends on when the interrupt handler executes. Because the value of j is reset at each
iteration of the outer loop, the bug will affect only one entry of the result y . But clearly the entry
that changes will depend on when the interrupt occurs. Furthermore, the change observed
in y depends on not only what new value is assigned to j (which may depend on the data
handled by the interrupt code), but also when in the inner loop the interrupt occurs. An inter-
rupt at the beginning of the inner loop will give a different result than one that occurs near the
end. The number of possible new values for the result vector is much too large to consider
manually—the bug cannot be found by enumerating the possible wrong values and correlat-
ing them with a given root cause. Even recognizing the error can be difficult—for example,
an interrupt that occurs at the very end of the inner loop will not cause any change in the
foreground program’s result. Finding such bugs generally requires a great deal of tedious
experimentation and frustration.

The CPU implements interrupts by checking the interrupt request line at the
beginning of execution of every instruction. If an interrupt request has been
asserted, the CPU does not fetch the instruction pointed to by the PC. Instead the
CPU sets the PC to a predefined location, which is the beginning of the interrupt

104 CHAPTER 3 CPUs

handling routine. The starting address of the interrupt handler is usually given as
a pointer—rather than defining a fixed location for the handler, the CPU defines a
location in memory that holds the address of the handler, which can then reside
anywhere in memory.

Because the CPU checks for interrupts at every instruction, it can respond
quickly to service requests from devices. However, the interrupt handler must
return to the foreground program without disturbing the foreground program’s
operation. Since subroutines perform a similar function, it is natural to build the
CPU’s interrupt mechanism to resemble its subroutine function. Most CPUs use
the same basic mechanism for remembering the foreground program’s PC as is
used for subroutines. The subroutine call mechanism in modern microprocessors
is typically a stack, so the interrupt mechanism puts the return address on a stack;
some CPUs use the same stack as for subroutines while others define a special
stack. The use of a procedure-like interface also makes it easier to provide a high-
level language interface for interrupt handlers. The details of the C interface to
interrupt handling routines vary both with the CPU and the underlying support
software.

Priorities and Vectors
Providing a practical interrupt system requires having more than a simple interrupt
request line. Most systems have more than one I/O device, so there must be some
mechanism for allowing multiple devices to interrupt.We also want to have flexibil-
ity in the locations of the interrupt handling routines, the addresses for devices,and
so on. There are two ways in which interrupts can be generalized to handle mul-
tiple devices and to provide more flexible definitions for the associated hardware
and software:

■ interrupt priorities allow the CPU to recognize some interrupts as more
important than others, and

■ interrupt vectors allow the interrupting device to specify its handler.

Prioritized interrupts not only allow multiple devices to be connected to the
interrupt line but also allow the CPU to ignore less important interrupt requests
while it handles more important requests. As shown in Figure 3.3, the CPU pro-
vides several different interrupt request signals, shown here as L1, L2, up to Ln.
Typically, the lower-numbered interrupt lines are given higher priority, so in this
case, if devices 1,2,and n all requested interrupts simultaneously,1’s request would
be acknowledged because it is connected to the highest-priority interrupt line.
Rather than provide a separate interrupt acknowledge line for each device, most
CPUs use a set of signals that provide the priority number of the winning interrupt
in binary form (so that interrupt level 7 requires 3 bits rather than 7). A device
knows that its interrupt request was accepted by seeing its own priority number
on the interrupt acknowledge lines.

3.1 Programming Input and Output 105

Device 1 Device 2 Device n

log2 nInterrupt acknowledge

CPU

L1 L2 Ln. . .

. . .

FIGURE 3.3

Prioritized device interrupts.

How do we change the priority of a device? Simply by connecting it to a different
interrupt request line. This requires hardware modification, so if priorities need to
be changeable,removable cards,programmable switches,or some other mechanism
should be provided to make the change easy.

The priority mechanism must ensure that a lower-priority interrupt does not
occur when a higher-priority interrupt is being handled. The decision process is
known as masking. When an interrupt is acknowledged, the CPU stores in an
internal register the priority level of that interrupt. When a subsequent interrupt
is received, its priority is checked against the priority register; the new request is
acknowledged only if it has higher priority than the currently pending interrupt.
When the interrupt handler exits, the priority register must be reset. The need to
reset the priority register is one reason why most architectures introduce a special-
ized instruction to return from interrupts rather than using the standard subroutine
return instruction.

The highest-priority interrupt is normally called the nonmaskable interrupt
(NMI). The NMI cannot be turned off and is usually reserved for interrupts caused
by power failures—a simple circuit can be used to detect a dangerously low power
supply,and the NMI interrupt handler can be used to save critical state in nonvolatile
memory, turn off I/O devices to eliminate spurious device operation during power-
down, and so on.

Most CPUs provide a relatively small number of interrupt priority levels, such
as eight. While more priority levels can be added with external logic, they may not
be necessary in all cases. When several devices naturally assume the same priority
(such as when you have several identical keypads attached to a single CPU), you
can combine polling with prioritized interrupts to efficiently handle the devices.

106 CHAPTER 3 CPUs

Device 1 Device 2 Device 3

CPU

L3 L2 L1

FIGURE 3.4

Using polling to share an interrupt over several devices.

As shown in Figure 3.4, you can use a small amount of logic external to the CPU
to generate an interrupt whenever any of the devices you want to group together
request service. The CPU will call the interrupt handler associated with this priority;
that handler does not know which of the devices actually requested the interrupt.
The handler uses software polling to check the status of each device: In this example,
it would read the status registers of 1, 2, and 3 to see which of them is ready and
requesting service.

Example 3.7 illustrates how priorities affect the order in which I/O requests are
handled.

Example 3.7

I/O with prioritized interrupts
Assume that we have devices A, B, and C. A has priority 1 (highest priority), B priority 2, and
C priority 3. The following UML sequence diagram shows which interrupt handler is executing
as a function of time for a sequence of interrupt requests.

In each case, an interrupt handler keeps running until either it is finished or a higher-
priority interrupt arrives. The C interrupt, although it arrives early, does not finish for a long
time because interrupts from both A and B intervene—system design must take into account
the worst-case combinations of interrupts that can occur to ensure that no device goes without
service for too long. When both A and B interrupt simultaneously, A’s interrupt gets prior-
ity; when A’s handler is finished, the priority mechanism automatically answers B’s pending
interrupt.

3.1 Programming Input and Output 107

Time

:Interrupt
requests

B

:A :B :C

C

A

B

A,B

:Background
task

Vectors provide flexibility in a different dimension, namely, the ability to define
the interrupt handler that should service a request from a device. Figure 3.5 shows
the hardware structure required to support interrupt vectors. In addition to the
interrupt request and acknowledge lines, additional interrupt vector lines run from
the devices to the CPU. After a device’s request is acknowledged, it sends its inter-
rupt vector over those lines to the CPU.The CPU then uses the vector number as an
index in a table stored in memory as shown in Figure 3.5. The location referenced
in the interrupt vector table by the vector number gives the address of the handler.

There are two important things to notice about the interrupt vector mecha-
nism. First, the device, not the CPU, stores its vector number. In this way, a device

108 CHAPTER 3 CPUs

Interrupt vector
table head

Interrupt vector table

Hardware structure

Interrupt
acknowledge

Interrupt
request

Device

Handler 1

Handler 3

Handler 4

Handler 2

Vector 0

Vector 1

Vector 2

Vector 3
CPU

Vector

FIGURE 3.5

Interrupt vectors.

can be given a new handler simply by changing the vector number it sends, with-
out modifying the system software. For example, vector numbers can be changed
by programmable switches. The second thing to notice is that there is no fixed
relationship between vector numbers and interrupt handlers. The interrupt vec-
tor table allows arbitrary relationships between devices and handlers. The vector
mechanism provides great flexibility in the coupling of hardware devices and the
software routines that service them.

Most modern CPUs implement both prioritized and vectored interrupts. Priori-
ties determine which device is serviced first,and vectors determine what routine is
used to service the interrupt. The combination of the two provides a rich interface
between hardware and software.

Interrupt overhead Now that we have a basic understanding of the interrupt mech-
anism, we can consider the complete interrupt handling process. Once a device
requests an interrupt, some steps are performed by the CPU, some by the device,
and others by software. Here are the major steps in the process:

1. CPU The CPU checks for pending interrupts at the beginning of an instruc-
tion. It answers the highest-priority interrupt, which has a higher priority
than that given in the interrupt priority register.

2. Device The device receives the acknowledgment and sends the CPU its
interrupt vector.

3. CPU The CPU looks up the device handler address in the interrupt vector
table using the vector as an index. A subroutine-like mechanism is used to
save the current value of the PC and possibly other internal CPU state, such
as general-purpose registers.

4. Software The device driver may save additional CPU state. It then performs
the required operations on the device. It then restores any saved state and
executes the interrupt return instruction.

3.1 Programming Input and Output 109

5. CPU The interrupt return instruction restores the PC and other automati-
cally saved states to return execution to the code that was interrupted.

Interrupts do not come without a performance penalty. In addition to the execu-
tion time required for the code that talks directly to the devices, there is execution
time overhead associated with the interrupt mechanisms.

■ The interrupt itself has overhead similar to a subroutine call. Because an inter-
rupt causes a change in the program counter, it incurs a branch penalty. In
addition, if the interrupt automatically stores CPU registers, that action requ-
ires extra cycles, even if the state is not modified by the interrupt handler.

■ In addition to the branch delay penalty, the interrupt requires extra cycles to
acknowledge the interrupt and obtain the vector from the device.

■ The interrupt handler will, in general, save and restore CPU registers that
were not automatically saved by the interrupt.

■ The interrupt return instruction incurs a branch penalty as well as the time
required to restore the automatically saved state.

The time required for the hardware to respond to the interrupt,obtain the vector,
and so on cannot be changed by the programmer. In particular,CPUs vary quite a bit
in the amount of internal state automatically saved by an interrupt.The programmer
does have control over what state is modified by the interrupt handler and therefore
it must be saved and restored. Careful programming can sometimes result in a small
number of registers used by an interrupt handler,thereby saving time in maintaining
the CPU state. However, such tricks usually require coding the interrupt handler in
assembly language rather than a high-level language.

Interrupts in ARM ARM7 supports two types of interrupts: fast interrupt requests
(FIQs) and interrupt requests (IRQs). An FIQ takes priority over an IRQ. The inter-
rupt table is always kept in the bottom memory addresses,starting at location 0.The
entries in the table typically contain subroutine calls to the appropriate handler.

The ARM7 performs the following steps when responding to an interrupt
[ARM99B]:

■ saves the appropriate value of the PC to be used to return,

■ copies the CPSR into a saved program status register (SPSR),

■ forces bits in the CPSR to note the interrupt, and

■ forces the PC to the appropriate interrupt vector.

When leaving the interrupt handler, the handler should:

■ restore the proper PC value,

■ restore the CPSR from the SPSR, and

■ clear interrupt disable flags.

110 CHAPTER 3 CPUs

The worst-case latency to respond to an interrupt includes the following
components:

■ two cycles to synchronize the external request,

■ up to 20 cycles to complete the current instruction,

■ three cycles for data abort, and

■ two cycles to enter the interrupt handling state.

This adds up to 27 clock cycles. The best-case latency is four clock cycles.

Interrupts in C55x Interrupts in the C55x [Tex04] never take less than seven clock
cycles. In many situations, they take 13 clock cycles.

A maskable interrupt is processed in several steps once the interrupt request is
sent to the CPU:

■ The interrupt flag register (IFR) corresponding to the interrupt is set.

■ The interrupt enable register (IER) is checked to ensure that the interrupt is
enabled.

■ The interrupt mask register (INTM) is checked to be sure that the interrupt is
not masked.

■ The interrupt flag register (IFR) corresponding to the flag is cleared.

■ Appropriate registers are saved as context.

■ INTM is set to 1 to disable maskable interrupts.

■ DGBM is set to 1 to disable debug events.

■ EALLOW is set to 0 to disable access to non-CPU emulation registers.

■ A branch is performed to the interrupt service routine (ISR).

The C55x provides two mechanisms—fast-return and slow-return—to save
and restore registers for interrupts and other context switches. Both processes
save the return address and loop context registers. The fast-return mode uses
RETA to save the return address and CFCT for the loop context bits. The slow-
return mode, in contrast, saves the return address and loop context bits on the
stack.

3.2 SUPERVISOR MODE, EXCEPTIONS, AND TRAPS
In this section, we consider exceptions and traps. These are mechanisms to handle
internal conditions, and they are very similar to interrupts in form. We begin with a
discussion of supervisor mode, which some processors use to handle exceptional
events and protect executing programs from each other.

3.2 Supervisor Mode, Exceptions, and Traps 111

3.2.1 Supervisor Mode
As will become clearer in later chapters, complex systems are often implemented
as several programs that communicate with each other. These programs may run
under the command of an operating system. It may be desirable to provide hardware
checks to ensure that the programs do not interfere with each other—for example,
by erroneously writing into a segment of memory used by another program. Soft-
ware debugging is important but can leave some problems in a running system;
hardware checks ensure an additional level of safety.

In such cases it is often useful to have a supervisor mode provided by the
CPU. Normal programs run in user mode. The supervisor mode has privileges
that user modes do not. For example, we study memory management systems in
Section 3.4.2 that allow the addresses of memory locations to be changed dynam-
ically. Control of the memory management unit (MMU) is typically reserved for
supervisor mode to avoid the obvious problems that could occur when program
bugs cause inadvertent changes in the memory management registers.

Not all CPUs have supervisor modes. Many DSPs, including the C55x, do not
provide supervisor modes. The ARM, however, does have such a mode. The ARM
instruction that puts the CPU in supervisor mode is called SWI:

SWI CODE_1

It can,of course,be executed conditionally,as with anyARM instruction. SWI causes
the CPU to go into supervisor mode and sets the PC to 0x08. The argument to SWI
is a 24-bit immediate value that is passed on to the supervisor mode code; it allows
the program to request various services from the supervisor mode.

In supervisor mode, the bottom 5 bits of the CPSR are all set to 1 to indicate
that the CPU is in supervisor mode. The old value of the CPSR just before the SWI
is stored in a register called the saved program status register (SPSR). There
are in fact several SPSRs for different modes; the supervisor mode SPSR is referred
to as SPSR_svc.

To return from supervisor mode,the supervisor restores the PC from register r14
and restores the CPSR from the SPSR_svc.

3.2.2 Exceptions
An exception is an internally detected error. A simple example is division by zero.
One way to handle this problem would be to check every divisor before division to
be sure it is not zero,but this would both substantially increase the size of numerical
programs and cost a great deal of CPU time evaluating the divisor’s value. The CPU
can more efficiently check the divisor’s value during execution. Since the time at
which a zero divisor will be found is not known in advance, this event is similar to
an interrupt except that it is generated inside the CPU. The exception mechanism
provides a way for the program to react to such unexpected events.

Just as interrupts can be seen as an extension of the subroutine mechanism,
exceptions are generally implemented as a variation of an interrupt. Since both deal

112 CHAPTER 3 CPUs

with changes in the flow of control of a program, it makes sense to use similar
mechanisms. However, exceptions are generated internally.

Exceptions in general require both prioritization and vectoring. Exceptions must
be prioritized because a single operation may generate more than one exception—
for example, an illegal operand and an illegal memory access. The priority of
exceptions is usually fixed by the CPU architecture. Vectoring provides a way for
the user to specify the handler for the exception condition. The vector number for
an exception is usually predefined by the architecture;it is used to index into a table
of exception handlers.

3.2.3 Traps
A trap,also known as a software interrupt , is an instruction that explicitly gener-
ates an exception condition. The most common use of a trap is to enter supervisor
mode. The entry into supervisor mode must be controlled to maintain security—if
the interface between user and supervisor mode is improperly designed,a user pro-
gram may be able to sneak code into the supervisor mode that could be executed
to perform harmful operations.

The ARM provides the SWI interrupt for software interrupts. This instruction
causes the CPU to enter supervisor mode.An opcode is embedded in the instruction
that can be read by the handler.

3.3 CO-PROCESSORS
CPU architects often want to provide flexibility in what features are implemented
in the CPU. One way to provide such flexibility at the instruction set level is to
allow co-processors, which are attached to the CPU and implement some of
the instructions. For example, floating-point arithmetic was introduced into the
Intel architecture by providing separate chips that implemented the floating-point
instructions.

To support co-processors, certain opcodes must be reserved in the instruction
set for co-processor operations. Because it executes instructions, a co-processor
must be tightly coupled to the CPU. When the CPU receives a co-processor instruc-
tion, the CPU must activate the co-processor and pass it the relevant instruction.
Co-processor instructions can load and store co-processor registers or can perform
internal operations. The CPU can suspend execution to wait for the co-processor
instruction to finish; it can also take a more superscalar approach and continue
executing instructions while waiting for the co-processor to finish.

A CPU may, of course, receive co-processor instructions even when there is
no coprocessor attached. Most architectures use illegal instruction traps to han-
dle these situations. The trap handler can detect the co-processor instruction and,
for example, execute it in software on the main CPU. Emulating co-processor
instructions in software is slower but provides compatibility.

3.4 Memory System Mechanisms 113

TheARM architecture provides support for up to 16 co-processors. Co-processors
are able to perform load and store operations on their own registers. They can also
move data between the co-processor registers and main ARM registers.

An example ARM co-processor is the floating-point unit. The unit occupies two
co-processor units in the ARM architecture, numbered 1 and 2, but it appears as a
single unit to the programmer. It provides eight 80-bit floating-point data registers,
floating-point status registers, and an optional floating-point status register.

3.4 MEMORY SYSTEM MECHANISMS
Modern microprocessors do more than just read and write a monolithic memory.
Architectural features improve both the speed and capacity of memory systems.
Microprocessor clock rates are increasing at a faster rate than memory speeds,such
that memories are falling further and further behind microprocessors every day.As a
result,computer architects resort to caches to increase the average performance of
the memory system.Although memory capacity is increasing steadily,program sizes
are increasing as well, and designers may not be willing to pay for all the memory
demanded by an application. Modern microprocessor units (MMUs) perform
address translations that provide a larger virtual memory space in a small physical
memory. In this section, we review both caches and MMUs.

3.4.1 Caches
Caches are widely used to speed up memory system performance. Many micropro-
cessor architectures include caches as part of their definition. The cache speeds
up average memory access time when properly used. It increases the variability
of memory access times—accesses in the cache will be fast, while access to loca-
tions not cached will be slow. This variability in performance makes it especially
important to understand how caches work so that we can better understand how
to predict cache performance and factor variabilities into system design.

A cache is a small, fast memory that holds copies of some of the contents of main
memory. Because the cache is fast, it provides higher-speed access for the CPU;but
since it is small, not all requests can be satisfied by the cache, forcing the system to
wait for the slower main memory. Caching makes sense when the CPU is using only
a relatively small set of memory locations at any one time; the set of active locations
is often called the working set .

Figure 3.6 shows how the cache support reads in the memory system. A cache
controller mediates between the CPU and the memory system comprised of the
main memory.The cache controller sends a memory request to the cache and main
memory. If the requested location is in the cache, the cache controller forwards the
location’s contents to the CPU and aborts the main memory request; this condition
is known as a cache hit . If the location is not in the cache, the controller waits for
the value from main memory and forwards it to the CPU; this situation is known as
a cache miss.

114 CHAPTER 3 CPUs

CPU

C
ac

h
e

co
n

tr
o

lle
r

Cache

Main
memory

Data

Data

Address

FIGURE 3.6

The cache in the memory system.

We can classify cache misses into several types depending on the situation that
generated them:

■ a compulsory miss (also known as a cold miss) occurs the first time a
location is used,

■ a capacity miss is caused by a too-large working set, and

■ a conflict miss happens when two locations map to the same location in the
cache.

Even before we consider ways to implement caches, we can write some basic
formulas for memory system performance. Let h be the hit rate, the probability
that a given memory location is in the cache. It follows that 1 � h is the miss rate,
or the probability that the location is not in the cache. Then we can compute the
average memory access time as

tav � htcache � (1 � h)tmain. (3.1)

where tcache is the access time of the cache and tmain is the main memory access
time. The memory access times are basic parameters available from the memory
manufacturer. The hit rate depends on the program being executed and the cache
organization, and is typically measured using simulators, as is described in more
detail in Section 5.6. The best-case memory access time (ignoring cache controller
overhead) is tcache, while the worst-case access time is tmain. Given that tmain is
typically 50–60 ns for DRAM, while tcache is at most a few nanoseconds, the spread
between worst-case and best-case memory delays is substantial.

Modern CPUs may use multiple levels of cache as shown in Figure 3.7. The
first-level cache (commonly known as L1 cache) is closest to the CPU, the
second-level cache (L2 cache) feeds the first-level cache, and so on.

The second-level cache is much larger but is also slower. If h1 is the first-level
hit rate and h2 is the rate at which access hit the second-level cache but not the
first-level cache, then the average access time for a two-level cache system is

tav � h1tL1 � h2tL2 � (1 � h1 � h2)tmain. (3.2)

3.4 Memory System Mechanisms 115

CPU
L2
cache

L1
cache

Main
memory

FIGURE 3.7

A two-level cache system.

As the program’s working set changes, we expect locations to be removed from
the cache to make way for new locations. When set-associative caches are used,we
have to think about what happens when we throw out a value from the cache to
make room for a new value. We do not have this problem in direct-mapped caches
because every location maps onto a unique block,but in a set-associative cache we
must decide which set will have its block thrown out to make way for the new
block. One possible replacement policy is least recently used (LRU), that is, throw
out the block that has been used farthest in the past. We can add relatively small
amounts of hardware to the cache to keep track of the time since the last access
for each block. Another policy is random replacement, which requires even less
hardware to implement.

The simplest way to implement a cache is a direct-mapped cache, as shown
in Figure 3.8. The cache consists of cache blocks, each of which includes a tag
to show which memory location is represented by this block, a data field holding
the contents of that memory, and a valid tag to show whether the contents of this
cache block are valid. An address is divided into three sections. The index is used
to select which cache block to check. The tag is compared against the tag value
in the block selected by the index. If the address tag matches the tag value in the
block, that block includes the desired memory location. If the length of the data
field is longer than the minimum addressable unit, then the lowest bits of the
address are used as an offset to select the required value from the data field. Given
the structure of the cache, there is only one block that must be checked to see
whether a location is in the cache—the index uniquely determines that block. If
the access is a hit, the data value is read from the cache.

Writes are slightly more complicated than reads because we have to update
main memory as well as the cache. There are several methods by which we can do
this. The simplest scheme is known as write-through—every write changes both
the cache and the corresponding main memory location (usually through a write
buffer). This scheme ensures that the cache and main memory are consistent, but
may generate some additional main memory traffic. We can reduce the number of
times we write to main memory by using a write-back policy:If we write only when
we remove a location from the cache, we eliminate the writes when a location is
written several times before it is removed from the cache.

116 CHAPTER 3 CPUs

Tag Index Offset

Valid Tag Data

Cache block

Address

Hit

5

Value

FIGURE 3.8

A direct-mapped cache.

The direct-mapped cache is both fast and relatively low cost, but it does have
limits in its caching power due to its simple scheme for mapping the cache onto
main memory. Consider a direct-mapped cache with four blocks, in which locations
0,1,2,and 3 all map to different blocks. But locations 4,8,12,… all map to the same
block as location 0; locations 1,5,9,13,… all map to a single block;and so on. If two
popular locations in a program happen to map onto the same block, we will not
gain the full benefits of the cache. As seen in Section 5.6, this can create program
performance problems.

The limitations of the direct-mapped cache can be reduced by going to the
set-associative cache structure shown in Figure 3.9.A set-associative cache is char-
acterized by the number of banks or ways it uses, giving an n-way set-associative
cache.A set is formed by all the blocks (one for each bank) that share the same index.
Each set is implemented with a direct-mapped cache. A cache request is broadcast
to all banks simultaneously. If any of the sets has the location, the cache reports
a hit. Although memory locations map onto blocks using the same function, there
are n separate blocks for each set of locations. Therefore, we can simultaneously
cache several locations that happen to map onto the same cache block. The set-
associative cache structure incurs a little extra overhead and is slightly slower than
a direct-mapped cache,but the higher hit rates that it can provide often compensate.

The set-associative cache generally provides higher hit rates than the direct-
mapped cache because conflicts between a small number of locations can be
resolved within the cache. The set-associative cache is somewhat slower, so the
CPU designer has to be careful that it doesn’t slow down the CPU’s cycle time too
much.A more important problem with set-associative caches for embedded program

3.4 Memory System Mechanisms 117

Line

Tag

Bank 1 Bank 2 . . . Bank n

DataHit

Bank select

FIGURE 3.9

A set-associative cache.

design is predictability. Because the time penalty for a cache miss is so severe, we
often want to make sure that critical segments of our programs have good behavior
in the cache. It is relatively easy to determine when two memory locations will con-
flict in a direct-mapped cache. Conflicts in a set-associative cache are more subtle,
and so the behavior of a set-associative cache is more difficult to analyze for both
humans and programs. Example 3.8 compares the behavior of direct-mapped and
set-associative caches.

Example 3.8

Direct-mapped vs. set-associative caches
For simplicity, let’s consider a very simple caching scheme. We use 2 bits of the address as
the tag. We compare a direct-mapped cache with four blocks and a two-way set-associative
cache with four sets, and we use LRU replacement to make it easy to compare the two
caches.

A 3-bit address is used for simplicity. The contents of the memory follow:

Address Data Address Data

000 0101 100 1000
001 1111 101 0001
010 0000 110 1010
011 0110 111 0100

We will give each cache the same pattern of addresses (in binary to simplify picking out the
index): 001, 010, 011, 100, 101, and 111.

To understand how the direct-mapped cache works, let’s see how its state evolves.

118 CHAPTER 3 CPUs

After 001 access: After 010 access: After 011 access:

Block Tag Data

00 — —
01 0 1111
10 — —
11 — —

Block Tag Data

00 — —
01 0 1111
10 0 0000
11 — —

Block Tag Data

00 — —
01 0 1111
10 0 0000
11 0 0110

After 100 access
(notice that the tag
bit for this entry is 1):

After 101 access
(overwrites the 01
block entry):

After 111 access
(overwrites the 11
block entry):

Block Tag Data

00 1 1000
01 0 1111
10 0 0000
11 0 0110

Block Tag Data

00 1 1000
01 1 0001
10 0 0000
11 0 0110

Block Tag Data

00 1 1000
01 1 0001
10 0 0000
11 1 0100

We can use a similar procedure to determine what ends up in the two-way set-associative
cache. The only difference is that we have some freedom when we have to replace a block with
new data. To make the results easy to understand, we use a least-recently-used replacement
policy. For starters, let’s make each way the size of the original direct-mapped cache. The
final state of the two-way set-associative cache follows:

Block Way 0 tag Way 0 data Way 1 tag Way 1 data

00 1 1000 — —
01 0 1111 1 0001
10 0 0000 — —
11 0 0110 1 0100

Of course, this is not a fair comparison for performance because the two-way set-
associative cache has twice as many entries as the direct-mapped cache. Let’s use a two-way,
set-associative cache with two sets, giving us four blocks, the same number as in the
direct-mapped cache. In this case, the index size is reduced to 1 bit and the tag grows to 2 bits.

Block Way 0 tag Way 0 data Way 1 tag Way 1 data

0 01 0000 10 1000
1 00 0111 11 0100

In this case, the cache contents are significantly different than for either the direct-mapped
cache or the four-block, two-way set-associative cache.

3.4 Memory System Mechanisms 119

The CPU knows when it is fetching an instruction (the PC is used to calculate
the address, either directly or indirectly) or data. We can therefore choose whether
to cache instructions, data, or both. If cache space is limited, instructions are the
highest priority for caching because they will usually provide the highest hit rates.
A cache that holds both instructions and data is called a unified cache.

Various ARM implementations use different cache sizes and organizations
[Fur96]. The ARM600 includes a 4-KB, 64-way (wow!) unified instruction/data
cache.The StrongARM uses a 16-KB,32-way instruction cache with a 32-byte block
and a 16-KB,32-way data cache with a 32-byte block;the data cache uses a write-back
strategy.

The C5510, one of the models of C55x, uses a 16-K byte instruction cache
organized as a two-way set-associative cache with four 32-bit words per line. The
instruction cache can be disabled by software if desired. It also includes two RAM
sets that are designed to hold large contiguous blocks of code. Each RAM set can
hold up to 4-K bytes of code organized as 256 lines of four 32-bit words per line. Each
RAM has a tag that specifies what range of addresses are in the RAM;it also includes
a tag valid field to show whether the RAM is in use and line valid bits for each line.

3.4.2 Memory Management Units and Address Translation
A MMU translates addresses between the CPU and physical memory. This translation
process is often known as memory mapping since addresses are mapped from a
logical space into a physical space. MMUs in embedded systems appear primarily
in the host processor. It is helpful to understand the basics of MMUs for embedded
systems complex enough to require them.

Many DSPs, including the C55x, do not use MMUs. Since DSPs are used for
compute-intensive tasks, they often do not require the hardware assist for logical
address spaces.

Early computers used MMUs to compensate for limited address space in their
instruction sets.When memory became cheap enough that physical memory could
be larger than the address space defined by the instructions,MMUs allowed software
to manage multiple programs in a single physical memory,each with its own address
space.

Because modern CPUs typically do not have this limitation, MMUs are used to
provide virtual addressing. As shown in Figure 3.10, the MMU accepts logical
addresses from the CPU. Logical addresses refer to the program’s abstract address
space but do not correspond to actual RAM locations.The MMU translates them from
tables to physical addresses that do correspond to RAM. By changing the MMU’s
tables, you can change the physical location at which the program resides without
modifying the program’s code or data. (We must, of course, move the program in
main memory to correspond to the memory mapping change.)

Furthermore, if we add a secondary storage unit such as flash or a disk, we can
eliminate parts of the program from main memory. In a virtual memory system, the
MMU keeps track of which logical addresses are actually resident in main memory;
those that do not reside in main memory are kept on the secondary storage device.

120 CHAPTER 3 CPUs

CPU MMU

Logical
addresses

Physical
addresses

Swapping

Secondary
storage

Data

Main
memory

FIGURE 3.10

A virtually addressed memory system.

When the CPU requests an address that is not in main memory, the MMU generates
an exception called a page fault .The handler for this exception executes code that
reads the requested location from the secondary storage device into main memory.
The program that generated the page fault is restarted by the handler only after

■ the required memory has been read back into main memory, and

■ the MMU’s tables have been updated to reflect the changes.

Of course, loading a location into main memory will usually require throwing
something out of main memory. The displaced memory is copied into secondary
storage before the requested location is read in. As with caches, LRU is a good
replacement policy.

There are two styles of address translation: segmented and paged . Each has
advantages and the two can be combined to form a segmented, paged addressing
scheme.As illustrated in Figure 3.11,segmenting is designed to support a large,arbi-
trarily sized region of memory, while pages describe small, equally sized regions.
A segment is usually described by its start address and size, allowing different
segments to be of different sizes. Pages are of uniform size, which simplifies the
hardware required for address translation. A segmented, paged scheme is created
by dividing each segment into pages and using two steps for address translation.
Paging introduces the possibility of fragmentation as program pages are scattered
around physical memory.

In a simple segmenting scheme,shown in Figure 3.12, the MMU would maintain
a segment register that describes the currently active segment. This register would
point to the base of the current segment.The address extracted from an instruction
(or from any other source for addresses, such as a register) would be used as the
offset for the address. The physical address is formed by adding the segment base
to the offset. Most segmentation schemes also check the physical address against
the upper limit of the segment by extending the segment register to include the
segment size and comparing the offset to the allowed size.

The translation of paged addresses requires more MMU state but a simpler cal-
culation. As shown in Figure 3.13, the logical address is divided into two sections,
including a page number and an offset. The page number is used as an index into
a page table, which stores the physical address for the start of each page. However,

3.4 Memory System Mechanisms 121

Page 1

Page 2

Physical
memory

Page 3

Segment 1

Segment 2

FIGURE 3.11

Segments and pages.

Segment base address

Segment register

Logical address

Range check

Physical address

Segment lower bound

Segment upper bound

To memory Range error

1

FIGURE 3.12

Address translation for a segment.

122 CHAPTER 3 CPUs

Page i base

Page table

Concatenate

Page

Logical address

Offset

Page

Physical address To memory

Offset

FIGURE 3.13

Address translation for a page.

since all pages have the same size and it is easy to ensure that page boundaries
fall on the proper boundaries, the MMU simply needs to concatenate the top bits
of the page starting address with the bottom bits from the page offset to form the
physical address. Pages are small, typically between 512 bytes and 4 KB. As a result,
the page table is large for an architecture with a large address space.The page table
is normally kept in main memory,which means that an address translation requires
memory access.

The page table may be organized in several ways, as shown in Figure 3.14. The
simplest scheme is a flat table. The table is indexed by the page number and each
entry holds the page descriptor. A more sophisticated method is a tree. The root
entry of the tree holds pointers to pointer tables at the next level of the tree; each
pointer table is indexed by a part of the page number. We eventually (after three
levels, in this case) arrive at a descriptor table that includes the page descriptor we
are interested in.A tree-structured page table incurs some overhead for the pointers,
but it allows us to build a partially populated tree. If some part of the address space
is not used, we do not need to build the part of the tree that covers it.

The efficiency of paged address translation may be increased by caching page
translation information. A cache for address translation is known as a translation
lookaside buffer (TLB).The MMU reads theTLB to check whether a page number
is currently in the TLB cache and, if so, uses that value rather than reading from
memory.

Virtual memory is typically implemented in a paging or segmented,paged scheme
so that only page-sized regions of memory need to be transferred on a page fault.
Some extensions to both segmenting and paging are useful for virtual memory:

■ At minimum, a present bit is necessary to show whether the logical segment
or page is currently in physical memory.

3.4 Memory System Mechanisms 123

Page descriptor for page

Tree structuredFlat

i

Page
descriptor

FIGURE 3.14

Alternative schemes for organizing page tables.

■ A dirty bit shows whether the page/segment has been written to. This bit is
maintained by the MMU, since it knows about every write performed by the
CPU.

■ Permission bits are often used. Some pages/segments may be readable but not
writable. If the CPU supports modes, pages/segments may be accessible by
the supervisor but not in user mode.

A data or instruction cache may operate either on logical or physical addresses,
depending on where it is positioned relative to the MMU.

A MMU is an optional part of the ARM architecture. The ARM MMU supports
both virtual address translation and memory protection; the architecture requires
that the MMU be implemented when cache or write buffers are implemented. The
ARM MMU supports the following types of memory regions for address translation:

■ a section is a 1-MB block of memory,

■ a large page is 64 KB, and

■ a small page is 4 KB.

An address is marked as section mapped or page mapped. A two-level scheme is
used to translate addresses.The first-level table,which is pointed to by theTranslation
Table Base register, holds descriptors for section translation and pointers to the
second-level tables. The second-level tables describe the translation of both large
and small pages. The basic two-level process for a large or small page is illustrated
in Figure 3.15. The details differ between large and small pages, such as the size of
the second-level table index. The first- and second-level pages also contain access
control bits for virtual memory and protection.

124 CHAPTER 3 CPUs

Translation Table
Base register

First-level descriptor

Concatenate

First-level index

Virtual address

Second-level index Offset

Physical address

Concatenate

First-level table

Second-level table

Second-level descriptor

FIGURE 3.15

ARM two-stage address translation.

3.5 CPU PERFORMANCE
Now that we have an understanding of the various types of instructions that CPUs
can execute, we can move on to a topic particularly important in embedded com-
puting: How fast can the CPU execute instructions? In this section, we consider
three factors that can substantially influence program performance: pipelining and
caching.

3.5.1 Pipelining
Modern CPUs are designed as pipelined machines in which several instructions
are executed in parallel. Pipelining greatly increases the efficiency of the CPU. But
like any pipeline,a CPU pipeline works best when its contents flow smoothly. Some
sequences of instructions can disrupt the flow of information in the pipeline and,
temporarily at least, slow down the operation of the CPU.

3.5 CPU Performance 125

The ARM7 has a three-stage pipeline:

■ Fetch the instruction is fetched from memory.

■ Decode the instruction’s opcode and operands are decoded to determine
what function to perform.

■ Execute the decoded instruction is executed.

Each of these operations requires one clock cycle for typical instructions. Thus,
a normal instruction requires three clock cycles to completely execute, known as
the latency of instruction execution. But since the pipeline has three stages, an
instruction is completed in every clock cycle. In other words, the pipeline has
a throughput of one instruction per cycle. Figure 3.16 illustrates the position
of instructions in the pipeline during execution using the notation introduced by
Hennessy and Patterson [Hen06]. A vertical slice through the timeline shows all
instructions in the pipeline at that time. By following an instruction horizontally,we
can see the progress of its execution.

The C55x includes a seven-stage pipeline [Tex00B]:

1. Fetch.

2. Decode.

3. Address computes data and branch addresses.

4. Access 1 reads data.

5. Access 2 finishes data read.

6. Read stage puts operands onto internal busses.

7. Execute performs operations.

RISC machines are designed to keep the pipeline busy. CISC machines may dis-
play a wide variation in instruction timing. Pipelined RISC machines typically have
more regular timing characteristics—most instructions that do not have pipeline
hazards display the same latency.

fetch decode exec add

fetch decode exec sub

fetch decode exec cmp

add r0,r1,#5

sub r2,r3,r6

cmp r2,#3

Time

FIGURE 3.16

Pipelined execution of ARM instructions.

126 CHAPTER 3 CPUs

The one-cycle-per-instruction completion rate does not hold in every case,
however. The simplest case for extended execution is when an instruction is too
complex to complete the execution phase in a single cycle. A multiple load instruc-
tion is an example of an instruction that requires several cycles in the execution
phase. Figure 3.17 illustrates a data stall in the execution of a sequence of instruc-
tions starting with a load multiple (LDMIA) instruction. Since there are two registers
to load, the instruction must stay in the execution phase for two cycles. In a mul-
tiphase execution, the decode stage is also occupied, since it must continue to
remember the decoded instruction. As a result, the SUB instruction is fetched at the
normal time but not decoded until the LDMIA is finishing. This delays the fetching
of the third instruction, the CMP.

Branches also introduce control stall delays into the pipeline, commonly
referred to as the branch penalty, as shown in Figure 3.18. The decision whether
to take the conditional branch BNE is not made until the third clock cycle of that
instruction’s execution, which computes the branch target address. If the branch
is taken, the succeeding instruction at PC+4 has been fetched and started to be
decoded. When the branch is taken, the branch target address is used to fetch the
branch target instruction. Since we have to wait for the execution cycle to complete
before knowing the target,we must throw away two cycles of work on instructions

Time

fetch

fetch

decode exec Id r2 exec Id r3

decode exec sub

fetch decode exec cmp

ldmia r0,
{r2,r3}

sub r2,r3,r6

cmp r2,#3

FIGURE 3.17

Pipelined execution of multicycle ARM instruction.

Time

fetch decode exec bne

fetch decode

exec bne exec bne

fetch decode exec add

bne foo

foo add
r0,r1,r2

sub r2,r3,r6

FIGURE 3.18

Pipelined execution of a branch in ARM.

3.5 CPU Performance 127

in the path not taken. The CPU uses the two cycles between starting to fetch the
branch target and starting to execute that instruction to finish housekeeping tasks
related to the execution of the branch.

One way around this problem is to introduce the delayed branch. In this
style of branch instruction, some number of instructions directly after the branch
are always executed, whether or not the branch is taken. This allows the CPU to
keep the pipeline full during execution of the branch. However, some of those
instructions after the delayed branch may be no-ops. Any instruction in the delayed
branch window must be valid for both execution paths,whether or not the branch
is taken. If there are not enough instructions to fill the delayed branch window, it
must be filled with no-ops.

Let’s use this knowledge of instruction execution time to evaluate the execution
time of some C code, as shown in Example 3.9.

Example 3.9

Execution time of a for loop on the ARM
We will use the C code for the FIR filter of Application Example 2.1:

for (i = 0, f = 0; i < N; i++)
f = f + c[i] * x[i];

We repeat the ARM code for this loop:

; loop initiation code
MOV r0,#0 ; use r0 for i, set to 0
MOV r8,#0 ; use a separate index for arrays
ADR r2,N ; get address for N
LDR r1,[r2] ; get value of N for loop termination test
MOV r2,#0 ; use r2 for f, set to 0
ADR r3,c ; load r3 with address of base of c array
ADR r5,x ; load r5 with address of base of x array
; loop body
loop LDR r4,[r3,r8] ; get value of c[i]

LDR r6,[r5,r8] ; get value of x[i]
MUL r4,r4,r6 ; compute c[i]*x[i]
ADD r2,r2,r4 ; add into running sum f
; update loop counter and array index
ADD r8,r8,#4 ; add one word offset to array index
ADD r0,r0,#1 ; add 1 to i
; test for exit
CMP r0,r1
BLT loop ; if i < N, continue loop

loopend...

128 CHAPTER 3 CPUs

Inspection of the code shows that the only instruction that may take more than one cycle
is the conditional branch in the loop test. We can count the number of instructions and
associated number of clock cycles in each block as follows:

Block Variable # Instructions # Cycles

Initiation t init 7 7
Body t body 4 4
Update t update 2 2
Test t test 2 2 best case,

4 worst case

The unconditional branch at the end of the update block always incurs a branch penalty of
two cycles. The BLT instruction in the test block incurs a pipeline delay of two cycles when
the branch is taken. That happens for all but the last iteration, when the instruction has an
execution time of t test,worst; the last iteration executes in time t test,best. We can write a formula
for the total execution time of the loop in cycles as

t loop � t init � N(t body � t update) � (N � 1)t test,worst � t test,best. (3.3)

3.5.2 Caching
We have already discussed caches functionally. Although caches are invisible in the
programming model, they have a profound effect on performance. We introduce
caches because they substantially reduce memory access time when the requested
location is in the cache. However, the desired location is not always in the cache
since it is considerably smaller than main memory.As a result,caches cause the time
required to access memory to vary considerably. The extra time required to access
a memory location not in the cache is often called the cache miss penalty. The
amount of variation depends on several factors in the system architecture, but a
cache miss is often several clock cycles slower than a cache hit.

The time required to access a memory location depends on whether the
requested location is in the cache. However,as we have seen,a location may not be
in the cache for several reasons.

■ At a compulsory miss, the location has not been referenced before.

■ At a conflict miss, two particular memory locations are fighting for the same
cache line.

■ At a capacity miss, the program’s working set is simply too large for the
cache.

The contents of the cache can change considerably over the course of execution
of a program. When we have several programs running concurrently on the CPU,

3.6 CPU Power Consumption 129

we can have very dramatic changes in the cache contents. We need to examine the
behavior of the programs running on the system to be able to accurately estimate
performance when caches are involved. We consider this problem in more detail in
Section 5.6.

3.6 CPU POWER CONSUMPTION
Power consumption is, in some situations, as important as execution time. In this
section we study the characteristics of CPUs that influence power consumption and
mechanisms provided by CPUs to control how much power they consume.

First, it is important to distinguish between energy and power . Power is, of
course, energy consumption per unit time. Heat generation depends on power
consumption. Battery life, on the other hand, most directly depends on energy
consumption. Generally, we will use the term power as shorthand for energy and
power consumption, distinguishing between them only when necessary.

The high-level power consumption characteristics of CPUs and other system
components are derived from the circuits used to build those components. Today,
virtually all digital systems are built with complementary metal oxide semi-
conductor (CMOS) circuitry. The detailed circuit characteristics are best left to a
study of VLSI design [Wol08], but the basic sources of CMOS power consumption
are easily identified and briefly described below.

■ Voltage drops: The dynamic power consumption of a CMOS circuit is
proportional to the square of the power supply voltage (V2). Therefore, by
reducing the power supply voltage to the lowest level that provides the
required performance, we can significantly reduce power consumption. We
also may be able to add parallel hardware and even further reduce the power
supply voltage while maintaining required performance [Cha92].

■ Toggling: A CMOS circuit uses most of its power when it is changing its
output value. This provides two ways to reduce power consumption. By
reducing the speed at which the circuit operates, we can reduce its power
consumption (although not the total energy required for the operation, since
the result is available later). We can actually reduce energy consumption by
eliminating unnecessary changes to the inputs of a CMOS circuit—eliminating
unnecessary glitches at the circuit outputs eliminates unnecessary power
consumption.

■ Leakage: Even when a CMOS circuit is not active, some charge leaks out
of the circuit’s nodes through the substrate. The only way to eliminate leak-
age current is to remove the power supply. Completely disconnecting the
power supply eliminates power consumption, but it usually takes a significant
amount of time to reconnect the system to the power supply and reinitialize
its internal state so that it once again performs properly.

130 CHAPTER 3 CPUs

As a result, we see the following power-saving strategies used in CMOS CPUs.

■ CPUs can be used at reduced voltage levels. For example, reducing the
power supply from 1 to 0.9 V causes the power consumption to drop by
12 0.92 � 1.2 X.

■ The CPU can be operated at a lower clock frequency to reduce power (but
not energy) consumption.

■ The CPU may internally disable certain function units that are not required for
the currently executing function. This reduces energy consumption.

■ Some CPUs allow parts of the CPU to be totally disconnected from the power
supply to eliminate leakage currents.

There are two types of power management features provided by CPUs.
A static power management mechanism is invoked by the user but does not
otherwise depend on CPU activities.An example of a static mechanism is a power-
down mode intended to save energy. This mode provides a high-level way to reduce
unnecessary power consumption. The mode is typically entered with an instruc-
tion. If the mode stops the interpretation of instructions, then it clearly cannot be
exited by execution of another instruction. Power-down modes typically end upon
receipt of an interrupt or other event. A dynamic power management mecha-
nism takes actions to control power based upon the dynamic activity in the CPU. For
example, the CPU may turn off certain sections of the CPU when the instructions
being executed do not need them.Application Example 3.2 describes the static and
dynamic energy efficiency features of one of the PowerPC chips.

Application Example 3.2

Energy efficiency features in the PowerPC 603
The PowerPC 603 [Gar94] was designed specifically for low-power operation while retaining
high performance. It typically dissipates 2.2 W running at 80 MHz. The architecture pro-
vides three low-power modes—doze, nap, and sleep—that provide static power management
capabilities for use by the programs and operating system.

The 603 also uses a variety of dynamic power management techniques for power minimiza-
tion that are performed automatically, without program intervention. The CPU is a two-issue,
out-of-order superscalar processor. It uses the dynamic techniques summarized below to
reduce power consumption.

■ An execution unit that is not being used can be shut down.

■ The cache, an 8-KB, two-way set-associative cache, was organized into subarrays so
that at most two out of eight subarrays will be accessed on any given clock cycle.
A variety of circuit techniques were also used in the cache to reduce power consumption.

Not all units in the CPU are active all the time; idling them when they are not being used
can save power. The table below shows the percentage of time various units in the 603 were
idle for the SPEC integer and floating-point benchmarks [Gar94].

3.6 CPU Power Consumption 131

Unit Specint92 (% idle) Specfp92 (% idle)

Data cache 29 28
Instruction cache 29 17
Load-store 35 17
Fixed-point 38 76
Floating-point 99 30
System register 89 97

Idle units are turned off automatically by switching off their clocks. Various stages of the
pipeline are turned on and off, depending on which stages are necessary at the current time.
Measurements comparing the chip’s power consumption with and without dynamic power
management show that dynamic techniques provide significant power savings.

–9%

Internal DC power
(W) at
80 MHz

–14% –16% –17%–14% –14%

Clinpack Heapsort Nsieve StanfordDhrystone Hanoi

With dynamic
power management

Without dynamic
power management

0

1

2

3

From [Gar94].

A power-down mode provides the opportunity to greatly reduce power con-
sumption because it will typically be entered for a substantial period of time.
However, going into and especially out of a power-down mode is not free—it costs
both time and energy.The power-down or power-up transition consumes time and
energy in order to properly control the CPU’s internal logic. Modern pipelined
processors require complex control that must be properly initialized to avoid cor-
rupting data in the pipeline. Starting up the processor must also be done carefully
to avoid power surges that could cause the chip to malfunction or even damage it.

The modes of a CPU can be modeled by a power state machine [Ben00]. An
example is shown in Figure 3.19. Each state in the machine represents a different
mode of the machine,and every state is labeled with its average power consumption.
The example machine has two states: run mode with power consumption Prun and

132 CHAPTER 3 CPUs

Run

Prun Psleep

trs

tsr

Sleep

FIGURE 3.19

A power state machine for a processor.

sleep mode with power consumption Psleep. Transitions show how the machine
can go from state to state; each transition is labeled with the time required to go
from the source to the destination state. In a more complex example, it may not
be possible to go from a particular state to another particular state—traversing a
sequence of states may be necessary.Application Example 3.3 describes the power-
down modes of the Strong ARM SA-1100.

Application Example 3.3

Power-saving modes of the StrongARM SA-1100
The StrongARM SA-1100 [Int99] is designed to provide sophisticated power management
capabilities that are controlled by the on-chip power manager. The processor takes two power
supplies, as seen in the following figure:

VDD_FAULT

BATT_FAULT

PWR_EN

VSS/VSSX

SA-1100

VDDX

VDD

VDD is the main power supply for the core CPU and is nominally 3.3 V. The VDDX supply
is used for the pins and other logic such as the power manager; it is normally at 1.5 V. (The
two supplies share a common ground.) The system can supply two inputs about the status of
the power supply. VDD_FAULT tells the CPU that the main power supply is not being properly
regulated, while BATT_FAULT indicates that the battery has been removed or is low. Either of
these events can cause the CPU to go into a low-power mode. In low-power operation, the VDD
supply can be turned off (the VDDX supply always remains on). When resuming operation,
the PWR_EN signal is used by the CPU to tell the external power supply to ramp up the VDD
power supply.

3.6 CPU Power Consumption 133

A system power manager can both monitor the CPU and other devices and control their
operation to gracefully transition between power modes. It provides several registers that allow
programs to control power modes, determine why power modes were entered, determine the
current state of power management modes, and so on.

The SA-1100 provides the three power modes described below.

■ Run mode is normal operation and has the highest power consumption.

■ Idle mode saves power by stopping the CPU clock. The system unit modules—real-
time clock, operating system timer, interrupt control, general-purpose I/O, and power
manager—all remain operational. Idle mode is entered by executing a three-instruction
sequence. The CPU returns to run mode upon receiving an interrupt from one of the
internal system units or from a peripheral or by resetting the CPU. This causes the
machine to restart the CPU clock and to resume execution where it left off.

■ Sleep mode shuts off most of the chip’s activity. Entering sleep mode causes the system
to shut down on-chip activity, reset the CPU, and negate the PWR_EN pin to tell the
external electronics that the chip’s power supply should be driven to 0 V. A separate I/O
power supply remains on and supplies power to the power manager so that the CPU
can be awakened from sleep mode; the low-speed clock keeps the power manager
running at low speeds sufficient to manage sleep mode. The CPU software should set
several registers to prepare for sleep mode. Sleep mode is entered by forcing the sleep
bit in the power manager control register; it can also be entered by a power supply
fault. The sleep shutdown sequence happens in three steps, each of which requires
about 30 �s. The machine wakes up from sleep state on a preprogrammed wake-up
event. The wake-up sequence has three steps: the PWR_EN pin is asserted to turn
on the external power supply and waits for about 10 ms; the 3.686-MHz oscillator is
ramped up to speed; and the internal reset is negated and the CPU boot sequence
begins.

Here is the power state machine of the SA-1100 [Ben00]:

From [Ben00].

Sleep

Prun 5 400 mW

Psleep5 0.16 mWPidle 5 50 mW

160 ms

90 μs

90 μs

10 μs

10 μs

Run

Idle

134 CHAPTER 3 CPUs

The sleep mode saves over three orders of magnitude of power consumption. However,
the time required to reenter run mode from sleep is over a tenth of a second.

The SA-1100 has a companion chip, the SA-1111, that provides an integrated set of
peripherals. That chip has its own power management modes that complement the SA-1100.

Design Example 3.7 DATA COMPRESSOR
Our design example for this chapter is a data compressor that takes in data with a
constant number of bits per data element and puts out a compressed data stream
in which the data is encoded in variable-length symbols. Because this chapter
concentrates on CPUs, we focus on the data compression routine itself.

3.7.1 Requirements and Algorithm
We use the Huffman coding technique, which is introduced in Application
Example 3.4.

We require some understanding of how our compression code fits into a larger
system. Figure 3.20 shows a collaboration diagram for the data compression process.
The data compressor takes in a sequence of input symbols and then produces a
stream of output symbols. Assume for simplicity that the input symbols are one
byte in length.The output symbols are variable length,so we have to choose a format
in which to deliver the output data. Delivering each coded symbol separately is
tedious, since we would have to supply the length of each symbol and use external
code to pack them into words. On the other hand, bit-by-bit delivery is almost
certainly too slow. Therefore,we will rely on the data compressor to pack the coded
symbols into an array. There is not a one-to-one relationship between the input and
output symbols,and we may have to wait for several input symbols before a packed
output word comes out.

Application Example 3.4

Huffman coding for text compression
Text compression algorithms aim at statistical reductions in the volume of data. One commonly
used compression algorithm is Huffman coding [Huf52], which makes use of information

:Input :Output
:Data
compressor

1..n: input
symbols

1..m: packed
output symbols

FIGURE 3.20

UML collaboration diagram for the data compressor.

3.7 Design Example: Data Compressor 135

on the frequency of characters to assign variable-length codes to characters. If shorter bit
sequences are used to identify more frequent characters, then the length of the total sequence
will be reduced.

In order to be able to decode the incoming bit string, the code characters must have
unique prefixes: No code may be a prefix of a longer code for another character. As a simple
example of Huffman coding, assume that these characters have the following probabilities P
of appearance in a message:

Character P Character P

A 0.45 D 0.08
B 0.24 E 0.07
C 0.11 F 0.05

We build the code from the bottom up. After sorting the characters by probability, we create
a new symbol by adding a bit. We then compute the joint probability of finding either one of
those characters and re-sort the table. The result is a tree that we can read top down to find
the character codes. The coding tree for our example appears below.

1

0

(P �1)

1

0

(P � 0.55)

a (P � 0.45)

b (P � 0.24)

c (P � 0.11)

d (P � 0.08)

e (P � 0.07)

f (P � 0.05)

1

0

(P � 0.31)
1

0

(P � 0.19)

1

0

(P � 0.12)

Reading the codes off the tree from the root to the leaves, we obtain the following coding
of the characters:

Character Code Character Code

A 1 D 0001
B 01 E 0010
C 0000 F 0011

136 CHAPTER 3 CPUs

Once the code has been constructed, which in many applications is done off-line,
the codes can be stored in a table for encoding. This makes encoding simple, but clearly
the encoded bit rate can vary significantly depending on the input character sequence.
On the decoding side, since we do not know a priori the length of a character’s bit sequence,
the computation time required to decode a character can vary significantly.

The data compressor as discussed above is not a complete system, but we can
create at least a partial requirements list for the module as seen below. We used the
abbreviation N/A for not applicable to describe some items that do not make sense
for a code module.

Name Data compression module

Purpose Code module for Huffman data compression
Inputs Encoding table, uncoded byte-size input symbols
Outputs Packed compressed output symbols
Functions Huffman coding
Performance Requires fast performance
Manufacturing cost N/A
Power N/A
Physical size and weight N/A

3.7.2 Specification
Let’s refine the description of Figure 3.20 to come up with a more complete speci-
fication for our data compression module.That collaboration diagram concentrates
on the steady-state behavior of the system. For a fully functional system,we have to
provide the following additional behavior.

■ We have to be able to provide the compressor with a new symbol table.

■ We should be able to flush the symbol buffer to cause the system to release
all pending symbols that have been partially packed. We may want to do this
when we change the symbol table or in the middle of an encoding session to
keep a transmitter busy.

A class description for this refined understanding of the requirements on the
module is shown in Figure 3.21. The class’s buffer and current-bit behaviors keep
track of the state of the encoding,and the table attribute provides the current symbol
table. The class has three methods as follows:

■ Encode performs the basic encoding function. It takes in a 1-byte input sym-
bol and returns two values: a boolean showing whether it is returning a full
buffer and, if the boolean is true, the full buffer itself.

3.7 Design Example: Data Compressor 137

Data-compressor

buffer: data-buffer
table: symbol-table
current-bit: integer

encode(): boolean, data-buffer
flush()
new-symbol-table()

FIGURE 3.21

Definition of the Data-compressor class.

insert()
length()

databuf[databuflen]: character
len: integer

Data-buffer

symbols[nsymbols]: data-buffer

Symbol-table

value(): symbol
load()

FIGURE 3.22

Additional class definitions for the data compressor.

■ New-symbol-table installs a new symbol table into the object and throws
away the current contents of the internal buffer.

■ Flush returns the current state of the buffer, including the number of valid
bits in the buffer.

We also need to define classes for the data buffer and the symbol table. These
classes are shown in Figure 3.22.The data-buffer will be used to hold both packed
symbols and unpacked ones (such as in the symbol table). It defines the buffer itself
and the length of the buffer. We have to define a data type because the longest
encoded symbol is longer than an input symbol. The longest Huffman code for an
eight-bit input symbol is 256 bits. (Ending up with a symbol this long happens only
when the symbol probabilities have the proper values.) The insert function packs
a new symbol into the upper bits of the buffer; it also puts the remaining bits in
a new buffer if the current buffer is overflowed. The Symbol-table class indexes

138 CHAPTER 3 CPUs

the encoded version of each symbol. The class defines an access behavior for the
table; it also defines a load behavior to create a new symbol table.The relationships
between these classes are shown in Figure 3.23—a data compressor object includes
one buffer and one symbol table.

Figure 3.24 shows a state diagram for the encode behavior. It shows that most
of the effort goes into filling the buffers with variable-length symbols. Figure 3.25

Data-compressor

Data-buffer Symbol-table

1

1

1

1

FIGURE 3.23

Relationships between classes in the data compressor.

Encode

Buffer filled? Create new buffer
Add to buffer

Add to buffer

Return true

Return false

Input symbol

T

F

Start Stop

FIGURE 3.24

State diagram for encode behavior.

Start Stop

New symbol
fills buffer?

Pack into this
buffer

Pack bottom bits
into this buffer,
top bits into
overflow buffer

Update length
Input symbol

T

F

FIGURE 3.25

State diagram for insert behavior.

3.7 Design Example: Data Compressor 139

shows a state diagram for insert. It shows that we must consider two cases—the
new symbol does not fill the current buffer or it does.

3.7.3 Program Design
Since we are only building an encoder, the program is fairly simple. We will use
this as an opportunity to compare object-oriented and non-OO implementations by
coding the design in both C++ and C.

OO design in C++
First is the object-oriented design using C++,since this implementation most closely
mirrors the specification. The first step is to design the data buffer. The data buffer
needs to be as long as the longest symbol. We also need to implement a function
that lets us merge in another data_buffer,shifting the incoming buffer by the proper
amount.

const int databuflen = 8; /* as long in bytes as
longest symbol */

const int bitsperbyte = 8; /* definition of byte */
const int bytemask = 0xff; /* use to mask to 8 bits for

safety */
const char lowbitsmask [bitsperbyte] = { 0, 1, 3, 7, 15, 31,

63, 127};
/* used to keep low bits in a byte */

typedef char boolean; /* for clarity */
#define TRUE 1
#define FALSE 0

class data_buffer {
char databuf[databuflen];
int len;
int length_in_chars() { return len/bitsperbyte; }

/* length in bytes rounded down-used in implementation */
public:

void insert(data_buffer, data_buffer&);
int length() { return len; } /* returns number of bits

in symbol */
int length_in_bytes() { return (int)ceil(len/8.0); }
void initialize(); /* initializes the data

structure */
void data_buffer::fill(data_buffer, int);

/* puts upper bits of symbol into buffer */
data_buffer& operator = (data_buffer&);

/* assignment operator */

140 CHAPTER 3 CPUs

data_buffer() { initialize(); } /* C++ constructor */
∼data_buffer() { } /* C++ destructor */

};

data_buffer empty_buffer; /* use this to initialize other
data_buffers */

void data_buffer::insert(data_buffer newval, data_buffer&
newbuf) {

/* This function puts the lower bits of a symbol (newval)
into an existing buffer without overflowing the buffer.
Puts spillover, if any, into newbuf. */

int i, j, bitstoshift, maxbyte;
/* precalculate number of positions to shift up */
bitstoshift = length() – length_in_bytes()*bitsperbyte;
/* compute how many bytes to transfer–can't run past end of

this buffer */
maxbyte = newval.length() + length() >

databuflen*bitsperbyte ?
databuflen : newval.length_in_chars();

for (i = 0; i < maxbyte; i++) {
/* add lower bits of this newval byte */
databuf[i + length_in_chars()] | =

(newval.databuf[i] << bitstoshift) &
byte-mask;

/* add upper bits of this newval byte */
databuf[i + length_in_chars() + 1] | =

(newval.databuf[i] >> (bitsperbyte –
bitstoshift)) &

lowbitsmask[bitsperbyte – bitstoshift];
}
/* fill up new buffer if necessary */
if (newval.length() + length() > databuflen*bitsperbyte) {

/* precalculate number of positions to shift down */
bitstoshift = length() % bitsperbyte;
for (i = maxbyte, j = 0; i++, j++;

i <= newval.length_in_chars()) {
newbuf.databuf[j] =

(newval.databuf[i] >> bitstoshift) &
bytemask;

newbuf.databuf[j] | =
newval.databuf[i + 1] &
lowbitsmask[bitstoshift];

}

3.7 Design Example: Data Compressor 141

}
/* update length */
len = len + newval.length() > databuflen*bitsperbyte ?

databuflen*bitsperbyte : len +
newval.length();

}

data_buffer& data_buffer::operator=(data_buffer& e) {
/* assignment operator for data buffer */
int i;
/* copy the buffer itself */
for (i = 0; i < databuflen; i++)

databuf[i] = e.databuf[i];
/* set length */
len = e.len;
/* return */
return e;

}

void data_buffer::fill(data_buffer newval, int shiftamt) {
/* This function puts the upper bits of a symbol

(newval) into the buffer. */

int i, bitstoshift, maxbyte;
/* precalculate number of positions to shift up */
bitstoshift = length() – length_in_bytes()*bitsperbyte;
/* compute how many bytes to transfer–can't run past

end of this buffer */
maxbyte = newval.length_in_chars() > databuflen ?

databuflen : newval.length_in_chars();
for (i = 0; i < maxbyte; i++) {

/* add lower bits of this newval byte */
databuf[i + length_in_chars()] =
newval.databuf[i] << bitstoshift;
/* add upper bits of this newval byte */
databuf[i + length_in_chars() + 1] =

newval.databuf[i] >> (bitsperbyte –
bitstoshift);

}
}

void data_buffer::initialize() {
/* Initialization code for data_buffer. */
int i;

142 CHAPTER 3 CPUs

/* initialize buffer to all zero bits */
for (i = 0; i < databuflen; i++)

databuf[i] = 0;
/* initialize length to zero */
len = 0;

}

The code for data_buffer is relatively complex, and not all of its complexity was
reflected in the state diagram of Figure 3.25. That does not mean the specification
was bad, but only that it was written at a higher level of abstraction.

The symbol table code can be implemented relatively easily as shown below.

const int nsymbols = 256;
class symbol_table {

data_buffer symbols[nsymbols];
public:

data_buffer value(int i) { return symbols[i]; }
void load(symbol_table&);
symbol_table() { } /* C++ constructor */
∼symbol_table() { } /* C++ destructor */

};

void symbol_table::load(symbol_table& newsyms) {
int i;
for (i = 0; i < nsymbols; i++) {

symbols[i] = newsyms.symbols[i];
}

}

Now let’s create the class definition for data_compressor:

typedef char boolean; /* for clarity */
class data_compressor {

data_buffer buffer;
int current_bit;
symbol_table table;

public:
boolean encode(char, data_buffer&);
void new_symbol_table(symbol_table newtable)

{ table = newtable; current_bit = 0;
buffer = empty_buffer; }

int flush(data_buffer& buf)
{ int temp = current_bit; buf = buffer;
buffer = empty_buffer; current_bit = 0;

return temp; }
data_compressor() { } /* C++ constructor */

3.7 Design Example: Data Compressor 143

∼data_compressor() { } /* C++ destructor */
};

Now let’s implement the encode() method.The main challenge here is managing
the buffer.

boolean data_compressor::encode(char isymbol, data_buffer&
fullbuf) {

data_buffer temp;
int overlen;

/* look up the new symbol */
temp = table.value(isymbol); /* the symbol itself */
/* will this symbol overflow the buffer? */
overlen = temp.length() + current_bit –

buffer.length(); /* amount of overflow */
if (overlen > 0) { /* we did in fact overflow */

data_buffer nextbuf;
buffer.insert(temp,nextbuf);
/* return the full buffer and keep the next

partial buffer */
fullbuf = buffer;
buffer = nextbuf;
return TRUE;

} else { /* no overflow */
data_buffer no_overflow;
buffer.insert(temp,no_overflow);
/* won't use this argument */
if (current_bit == buffer.length()) {
/* return current buffer */

fullbuf = buffer;
buffer.initialize(); /* initialize the

buffer */
return TRUE;
}

else return FALSE; /* buffer isn't full yet */
}

}

OO design in C
How would we have to modify the implementation for C? We have two choices in
implementation,based on whether we want to support multiple simultaneous data
compressors. If we want to strictly adhere to the specification, we must be able to
run several simultaneous compressors,since in the object-oriented specification we
can create as many new data-compressor objects as we want.

144 CHAPTER 3 CPUs

We may not have the luxury of coding the algorithm in C++. While C is almost
universally supported on embedded processors,support for languages that support
object orientation such as C++ or Java is not so universal. How would we have to
structure C code to provide multiple instantiations of the data compressor? The fun-
damental point is that we cannot rely on any global variables—all of the object state
must be replicable.We can do this relatively easily,making the code only a little more
cumbersome.We create a structure that holds the data part of the object as follows:

struct data_compressor_struct {
data_buffer buffer;
int current_bit;
sym_table table;

}

typedef struct data_compressor_struct data_compressor,

data_compressor_ptr; / data type declaration for
convenience */

We would,of course,have to do something similar for the other classes. Depend-
ing on how strict we want to be,we may want to define data access functions to get
to fields in the various structures we create. C would permit us to get to those struct
fields without using the access functions,but using the access functions would give
us a little extra freedom to modify the structure definitions later.

We then implement the class methods as C functions,passing in a pointer to the
data_compressor object we want to operate on. Appearing below is the beginning
of the modified encode method showing how we make explicit all references to
the data in the object.

typedef char boolean; /* for clarity */
#define TRUE 1
#define FALSE 0

boolean data_compressor_encode(data_compressor_ptr mycmprs,
char isymbol, data_buffer *fullbuf) {

data_buffer temp;
int len, overlen;

/* look up the new symbol */
temp = mycmprs->table[isymbol].value; /* the symbol

itself */
len = mycmprs->table[isymbol].length; /* its value */
...

(For C++ afficionados, the above amounts to making explicit the C++ this
pointer.)

3.7 Design Example: Data Compressor 145

If, on the other hand, we did not care about the ability to run multiple com-
pressions simultaneously,we can make the functions a little more readable by using
global variables for the class variables:

static data_buffer buffer;
static int current_bit;
static sym_table table;

We have used the C static declaration to ensure that these globals are not defined
outside the file in which they are defined; this gives us a little added modularity. We
would, of course, have to update the specification so that it makes clear that only
one compressor object can be running at a time.The functions that implement the
methods can then operate directly on the globals as seen below.

boolean data_compressor_encode(char isymbol, data_buffer*
fullbuf) {

data_buffer temp;
int len, overlen;

/* look up the new symbol */
temp = table[isymbol].value; /* the symbol itself */
len = table[isymbol].length; /* its value */
...

Notice that this code does not need the structure pointer argument, making it
resemble the C++ code a little more closely. However, horrible bugs will ensue if
we try to run two different compressions at the same time through this code.

What can we say about the efficiency of this code? Efficiency has many aspects
covered in more detail in Chapter 5. For the moment, let’s consider instruction
selection, that is, how well the compiler does in choosing the right instructions to
implement the operations. Bit manipulations such as we do here often raise con-
cerns about efficiency. But if we have a good compiler and we select the right data
types, instruction selection is usually not a problem. If we use data types that do not
require data type transformations, a good compiler can select the right instructions
to efficiently implement the required operations.

3.7.4 Testing
How do we test this program module to be sure it works?We consider testing much
more thoroughly in Section 5.10. In the meantime, we can use common sense to
come up with some testing techniques.

One way to test the code is to run it and look at the output without consid-
ering how the code is written. In this case, we can load up a symbol table, run
some symbols through it, and see whether we get the correct result. We can get the
symbol table from outside sources (such as the tables of Application Example 3.4)

146 CHAPTER 3 CPUs

DecoderEncoder

Compare

Input symbols Result

Symbol table

FIGURE 3.26

A test of the encoder.

or by writing a small program to generate it ourselves. We should test several
different symbol tables. We can get an idea of how thoroughly we are covering
the possibilities by looking at the encoding trees—if we choose several very dif-
ferent looking encoding trees, we are likely to cover more of the functionality
of the module. We also want to test enough symbols for each symbol table. One
way to help automate testing is to write a Huffman decoder. As illustrated in
Figure 3.26, we can run a set of symbols through the encoder, and then through
the decoder, and simply make sure that the input and output are the same. If they
are not, we have to check both the encoder and decoder to locate the problem,
but since most practical systems will require both in any case, this is a minor
concern.

Another way to test the code is to examine the code itself and try to identify
potential problem areas. When we read the code, we should look for places where
data operations take place to see that they are performed properly. We also want to
look at the conditionals to identify different cases that need to be exercised. Some
ideas of things to look out for are listed below.

■ Is it possible to run past the end of the symbol table?

■ What happens when the next symbol does not fill up the buffer?

■ What happens when the next symbol exactly fills up the buffer?

■ What happens when the next symbol overflows the buffer?

■ Do very long encoded symbols work properly? How about very short ones?

■ Does flush() work properly?

Testing the internals of code often requires building scaffolding code. For
example, we may want to test the insert method separately, which would require
building a program that calls the method with the proper values. If our programming
language comes with an interpreter, building such scaffolding is easier because we
do not have to create a complete executable, but we often want to automate such
tests even with interpreters because we will usually execute them several times.

Further Reading 147

SUMMARY
Numerous mechanisms must be used to implement complete computer systems.
For example, interrupts have little direct visibility in the instruction set,but they are
very important to input and output operations. Similarly, memory management is
invisible to most of the program but is very important to creating a working system.

Although we are not directly concerned with the details of computer archi-
tecture, characteristics of the underlying CPU hardware have a major impact on
programs. When designing embedded systems, we are typically concerned about
characteristics such as execution speed or power consumption. Having some
understanding of the factors that determine performance and power will help you
later as you develop techniques for optimizing programs to meet these criteria.

What We Learned

■ Two major styles of I/O are polled and interrupt driven.

■ Interrupts may be vectorized and prioritized.

■ Supervisor mode helps protect the computer from program errors and
provides a mechanism for controlling multiple programs.

■ An exception is an internal error; a trap or software interrupt is explicitly
generated by an instruction. Both are handled similarly to interrupts.

■ A cache provides fast storage for a small number of main memory locations.
Caches may be direct mapped or set associative.

■ A memory management unit translates addresses from logical to physical
addresses.

■ Co-processors provide a way to optionally implement certain instructions in
hardware.

■ Program performance can be influenced by pipelining, superscalar execu-
tion, and the cache. Of these, the cache introduces the most variability into
instruction execution time.

■ CPUs may provide static (independent of program behavior) or dynamic (influ-
enced by currently executing instructions) methods for managing power
consumption.

FURTHER READING
As with instruction sets, the ARM and C55x manuals provide good descriptions
of exceptions, memory management, and caches for those processors. Patterson
and Hennessy [Pat07] provide a thorough description of computer architecture,
including pipelining, caches, and memory management.

148 CHAPTER 3 CPUs

QUESTIONS
Q3-1 Why do most computer systems use memory-mapped I/O?

Q3-2 WriteARM code that tests a register at location ds1 and continues execution
only when the register is nonzero.

Q3-3 Write ARM code that waits for the low-order bit of device register ds1 to
become 1 and then reads a value from register dd1.

Q3-4 Implement peek() and poke() in assembly language for ARM.

Q3-5 Draw a UML sequence diagram for a busy-wait read of a device.The diagram
should include the program running on the CPU and the device.

Q3-6 Draw a UML sequence diagram for a busy-wait write of a device.The diagram
should include the program running on the CPU and the device.

Q3-7 Draw a UML sequence diagram for copying characters from an input to
an output device using busy-wait I/O. The diagram should include the two
devices and the two busy-wait I/O handlers.

Q3-8 When would you prefer to use busy-wait I/O over interrupt-driven I/O?

Q3-9 Draw a UML sequence diagram for an interrupt-driven read of a device.
The diagram should include the background program, the handler, and the
device.

Q3-10 Draw a UML sequence diagram for an interrupt-driven write of a device.
The diagram should include the background program, the handler, and the
device.

Q3-11 Draw a UML sequence diagram for a vectored interrupt-driven read of a
device. The diagram should include the background program, the interrupt
vector table, the handler, and the device.

Q3-12 Draw a UML sequence diagram for copying characters from an input to an
output device using interrupt-driven I/O. The diagram should include the
two devices and the two I/O handlers.

Q3-13 Draw a UML sequence diagram of a higher-priority interrupt that happens
during a lower-priority interrupt handler. The diagram should include the
device, the two handlers, and the background program.

Q3-14 Draw a UML sequence diagram of a lower-priority interrupt that happens
during a higher-priority interrupt handler. The diagram should include the
device, the two handlers, and the background program.

Q3-15 Draw a UML sequence diagram of a nonmaskable interrupt that happens
during a low-priority interrupt handler. The diagram should include the
device, the two handlers, and the background program.

Questions 149

Q3-16 Three devices are attached to a microprocessor: Device 1 has highest pri-
ority and device 3 has lowest priority. Each device’s interrupt handler
takes 5 time units to execute. Show what interrupt handler (if any) is
executing at each time given the sequence of device interrupts displayed
below.

Device 1

Device 2

Device 3

5 10 15 20 25 30 35 40

Q3-17 Draw a UML sequence diagram that shows how anARM processor goes into
supervisor mode.The diagram should include the supervisor mode program
and the user mode program.

Q3-18 Draw a UML sequence diagram that shows how anARM processor handles a
floating-point exception.The diagram should include the user program, the
exception handler, and the exception handler table.

Q3-19 Provide examples of how each of the following can occur in a typical
program:

a. Compulsory miss.

b. Capacity miss.

c. Conflict miss.

Q3-20 What is the average memory access time of a machine whose hit rate is 93%,
with a cache access time of 5 ns and a main memory access time of 80 ns?

Q3-21 If we want an average memory access time of 6.5 ns,our cache access time
is 5 ns,and our main memory access time is 80 ns,what cache hit rate must
we achieve?

Q3-22 Assume that a system has a two-level cache: The level 1 cache has a hit rate
of 90% and the level 2 cache has a hit rate of 97%. The level 1 cache access
time is 4 ns, the level 2 access time is 15 ns, and the level 3 access time is
80 ns. What is the average memory access time?

Q3-23 In the two-way, set-associative cache with four banks of Example 3.8, show
the state of the cache after each memory access, as was done for the direct-
mapped cache. Use an LRU replacement policy.

150 CHAPTER 3 CPUs

Q3-24 The following code is executed by an ARM processor with each instruction
executed exactly once:

MOV r0,#0 ; use r0 for i, set to 0
LDR r1,#10 ; get value of N for loop

termination test
MOV r2,#0 ; use r2 for f, set to 0
ADR r3,c ; load r3 with address of

base of c array
ADR r5,x ; load r5 with address of

base of x array
; loop test

loop CMP r0,r1
BGE loopend ; if i >= N, exit loop
; loop body
LDR r4,[r3,r0] ; get value of c[i]
LDR r6,[r5,r0] ; get value of x[i]
MUL r4,r4,r6 ; compute c[i]*x[i]
ADD r2,r2,r4 ; add into running sum f
; update loop counter
ADD r0,r0,#1 ; add 1 to i
B loop ; unconditional branch to top

of loop

Show the contents of the instruction cache for these configurations,
assuming each line holds one ARM instruction:

a. Direct-mapped, four lines.

b. Direct-mapped, eight lines.

c. Two-way set-associative, four lines per set.

Q3-25 Show a UML state diagram for a paged address translation using a flat page
table.

Q3-26 Show a UML state diagram for a paged address translation using a three-level,
tree-structured page table.

Q3-27 What are the stages in an ARM pipeline?

Q3-28 What are the stages in the C55x pipeline?

Q3-29 What is the difference between latency and throughput?

Q3-30 Draw two pipeline diagrams showing what happens when an ARM BZ
instruction is taken and not taken, respectively.

Lab Exercises 151

Q3-31 Name three mechanisms by which a CMOS microprocessor consumes
power.

Q3-32 Provide a user-level example of

a. Static power management.

b. Dynamic power management.

Q3-33 Why can’t you use the same mechanism to return from a sleep power-saving
state as you do from an idle power-saving state?

LAB EXERCISES
L3-1 Write a simple loop that lets you exercise the cache. By changing the number

of statements in the loop body, you can vary the cache hit rate of the loop as it
executes. If your microprocessor fetches instructions from off-chip memory,
you should be able to observe changes in the speed of execution by observing
the microprocessor bus.

L3-2 Try to measure the time required to respond to an interrupt.

This page intentionally left blank

CHAPTER

4Bus-Based Computer
Systems

■ CPU buses, I/O devices, and interfacing.

■ The CPU system as a framework for understanding design
methodology.

■ System-level performance and power consumption.

■ Development environments and debugging.

■ An alarm clock design.

INTRODUCTION
In this chapter, we concentrate on bus-based computer systems created using
microprocessors, I/O devices, and memory components. The microprocessor is an
important element of the embedded computing system, but it cannot do its job
without memories and I/O devices. We need to understand how to interconnect
microprocessors and devices using the CPU bus. Luckily, there are many similarities
between the platforms required for different applications, so we can extract some
generally useful principles by examining a few basic concepts.

In the next section, we study the CPU bus, which forms the backbone of the
hardware system. Because memories are very important components of embedded
platforms, Section 4.2 studies types of memory devices. Section 4.3 introduces a
variety of types of I/O devices. Section 4.4 introduces basic techniques for interfac-
ing memories and I/O devices to the CPU bus. Section 4.5 focuses on the structure
of the complete platform, while Section 4.6 considers development and debug-
ging. Section 4.7 looks at system-level performance analysis for bus-based systems.
Section 4.8 wraps up with an alarm clock as a design example.

4.1 THE CPU BUS
A computer system encompasses much more than the CPU;it also includes memory
and I/O devices. The bus is the mechanism by which the CPU communicates with
memory and devices. A bus is, at a minimum, a collection of wires, but the bus also

153

154 CHAPTER 4 Bus-Based Computer Systems

defines a protocol by which the CPU, memory, and devices communicate. One of
the major roles of the bus is to provide an interface to memory. (Of course, I/O
devices also connect to the bus.) Based on understanding of the bus, we study the
characteristics of memory components in this section.

4.1.1 Bus Protocols
The basic building block of most bus protocols is the four-cycle handshake,
illustrated in Figure 4.1. The handshake ensures that when two devices want to
communicate, one is ready to transmit and the other is ready to receive. The hand-
shake uses a pair of wires dedicated to the handshake: enq (meaning enquiry) and
ack (meaning acknowledge). Extra wires are used for the data transmitted during
the handshake. The four cycles are described below.

1. Device 1 raises its output to signal an enquiry, which tells device 2 that it
should get ready to listen for data.

Device 1 Device 2

Structure

Enq

Ack

Action

Time

Device 2

Device 1

1 2 3 4

Behavior

FIGURE 4.1

The four-cycle handshake.

4.1 The CPU Bus 155

2. When device 2 is ready to receive, it raises its output to signal an acknowl-
edgment. At this point, devices 1 and 2 can transmit or receive.

3. Once the data transfer is complete, device 2 lowers its output, signaling that
it has received the data.

4. After seeing that ack has been released, device 1 lowers its output.

At the end of the handshake,both handshaking signals are low, just as they were
at the start of the handshake. The system has thus returned to its original state in
readiness for another handshake-enabled data transfer.

Microprocessor buses build on the handshake for communication between the
CPU and other system components. The term bus is used in two ways. The most
basic use is as a set of related wires, such as address wires. However, the term may
also mean a protocol for communicating between components.To avoid confusion,
we will use the term bundle to refer to a set of related signals. The fundamental
bus operations are reading and writing. Figure 4.2 shows the structure of a typical
bus that supports reads and writes. The major components follow:

■ Clock provides synchronization to the bus components,

■ R/W is true when the bus is reading and false when the bus is writing,

■ Address is an a-bit bundle of signals that transmits the address for an access,

■ Data is an n-bit bundle of signals that can carry data to or from the CPU, and

■ Data ready signals when the values on the data bundle are valid.

All transfers on this basic bus are controlled by the CPU—the CPU can read or
write a device or memory, but devices or memory cannot initiate a transfer. This is
reflected by the fact that R/W and address are unidirectional signals, since only the
CPU can determine the address and direction of the transfer.

CPU

Device 1

Memory

Device 2

Clock
R/W
Address
Data ready
Data

a

n

FIGURE 4.2

A typical microprocessor bus.

156 CHAPTER 4 Bus-Based Computer Systems

Low 10 ns

Stable
Changing

Timing
constraint

High Rising Falling

 A

B

C

Time

FIGURE 4.3

Timing diagram notation.

The behavior of a bus is most often specified as a timing diagram. A timing
diagram shows how the signals on a bus vary over time, but since values like
the address and data can take on many values, some standard notation is used
to describe signals, as shown in Figure 4.3. A’s value is known at all times, so it
is shown as a standard waveform that changes between zero and one. B and C
alternate between changing and stable states. A stable signal has, as the name
implies, a stable value that could be measured by an oscilloscope, but the exact
value of that signal does not matter for purposes of the timing diagram. For exam-
ple, an address bus may be shown as stable when the address is present, but the
bus’s timing requirements are independent of the exact address on the bus.A signal
can go between a known 0/1 state and a stable/changing state. A changing signal
does not have a stable value. Changing signals should not be used for computation.
To be sure that signals go to their proper values at the proper times,timing diagrams
sometimes show timing constraints. We draw timing constraints in two different
ways, depending on whether we are concerned with the amount of time between
events or only the order of events. The timing constraint from A to B, for example,
shows that A must go high before B becomes stable.The constraint from A to B also
has a time value of 10 ns, indicating that A goes high at least 10 ns before B goes
stable.

Figure 4.4 shows a timing diagram for the example bus. The diagram shows a
read and a write. Timing constraints are shown only for the read operation, but
similar constraints apply to the write operation. The bus is normally in the read
mode since that does not change the state of any of the devices or memories. The
CPU can then ignore the bus data lines until it wants to use the results of a read.
Notice also that the direction of data transfer on bidirectional lines is not specified
in the timing diagram. During a read, the external device or memory is sending a
value on the data lines, while during a write the CPU is controlling the data lines.

4.1 The CPU Bus 157

Clock

R/W

Address
enable

Address

Data

Data ready

Read Write Time

FIGURE 4.4

Timing diagram for the example bus.

With practice, we can see the sequence of operations for a read on the timing
diagram as follows:

■ A read or write is initiated by setting address enable high after the clock starts
to rise. We set R/W � 1 to indicate a read, and the address lines are set to the
desired address.

■ One clock cycle later, the memory or device is expected to assert the data
value at that address on the data lines. Simultaneously, the external device
specifies that the data are valid by pulling down the data ready line.This line
is active low,meaning that a logically true value is indicated by a low voltage,
in order to provide increased immunity to electrical noise.

■ The CPU is free to remove the address at the end of the clock cycle and must
do so before the beginning of the next cycle.The external device has a similar
requirement for removing the data value from the data lines.

The write operation has a similar timing structure.The read/write sequence does
illustrate that timing constraints are required on the transition of the R/W signal

158 CHAPTER 4 Bus-Based Computer Systems

between read and write states. The signal must, of course, remain stable within a
read or write. As a result there is a restricted time window in which the CPU can
change between read and write modes.

The handshake that tells the CPU and devices when data are to be transferred is
formed by data ready for the acknowledge side, but is implicit for the enquiry side.
Since the bus is normally in read mode, enq does not need to be asserted, but the
acknowledge must be provided by data ready.

The data ready signal allows the bus to be connected to devices that are slower
than the bus. As shown in Figure 4.5, the external device need not immediately
assert data ready. The cycles between the minimum time at which data can be

Clock

R/W

Address
enable

Address

Data

Data ready

Time

Wait
state

FIGURE 4.5

A wait state on a read operation.

4.1 The CPU Bus 159

Clock

R/W

Address
enable

Burst

Address

Data

Data ready

Time

Data 1 Data 2 Data 3 Data 4

FIGURE 4.6

A burst read transaction.

asserted and when it is actually asserted are known as wait states. Wait states are
commonly used to connect slow, inexpensive memories to buses.

We can also use the bus handshaking signals to perform burst transfers, as
illustrated in Figure 4.6. In this burst read transaction, the CPU sends one address
but receives a sequence of data values.We add an extra line to the bus,called burst9
here,which signals when a transaction is actually a burst. Releasing the burst9 signal
tells the device that enough data has been transmitted. To stop receiving data after
the end of data 4, the CPU releases the burst9 signal at the end of data 3 since the
device requires some time to recognize the end of the burst. Those values come
from successive memory locations starting at the given address.

Some buses provide disconnected transfers. In these buses, the request and
response are separate. A first operation requests the transfer. The bus can then be
used for other operations. The transfer is completed later, when the data are ready.

160 CHAPTER 4 Bus-Based Computer Systems

Get
data

CPU

Ack Wait Wait

See
ack

Start
here

Device

Send
data

Ack

Adrs

Done
Release
ack

Start hereAdrs

FIGURE 4.7

State diagrams for the bus read transaction.

The state machine view of the bus transaction is also helpful and a useful com-
plement to the timing diagram. Figure 4.7 shows the CPU and device state machines
for the read operation. As with a timing diagram, we do not show all the possible
values of address and data lines but instead concentrate on the transitions of control
signals.When the CPU decides to perform a read transaction,it moves to a new state,
sending bus signals that cause the device to behave appropriately.The device’s state
transition graph captures its side of the protocol.

Some buses have data bundles that are smaller than the natural word size of
the CPU. Using fewer data lines reduces the cost of the chip. Such buses are eas-
iest to design when the CPU is natively addressable. A more complicated proto-
col hides the smaller data sizes from the instruction execution unit in the CPU.
Byte addresses are sequentially sent over the bus, receiving one byte at a time; the
bytes are assembled inside the CPU’s bus logic before being presented to the CPU
proper.

Some buses use multiplexed address and data.As shown in Figure 4.8,additional
control lines are provided to tell whether the value on the address/data lines is an
address or data. Typically, the address comes first on the combined address/data
lines, followed by the data.The address can be held in a register until the data arrive
so that both can be presented to the device (such as a RAM) at the same time.

4.1.2 DMA
Standard bus transactions require the CPU to be in the middle of every read and
write transaction. However, there are certain types of data transfers in which the
CPU does not need to be involved. For example, a high-speed I/O device may want
to transfer a block of data into memory. While it is possible to write a program that
alternately reads the device and writes to memory, it would be faster to eliminate
the CPU’s involvement and let the device and memory communicate directly. This

4.1 The CPU Bus 161

CPU

Adrs enable Adrs

Data

Adrs

Device

Data enable

FIGURE 4.8

Bus signals for multiplexing address and data.

CPU

DMA
controller Device

Memory

Clock
R/W

n

a
Address
Date ready
Data

Bus
request

Bus
grant

FIGURE 4.9

A bus with a DMA controller.

capability requires that some unit other than the CPU be able to control operations
on the bus.

Direct memory access (DMA) is a bus operation that allows reads and writes
not controlled by the CPU. A DMA transfer is controlled by a DMA controller ,
which requests control of the bus from the CPU.After gaining control,the DMA con-
troller performs read and write operations directly between devices and memory.

Figure 4.9 shows the configuration of a bus with a DMA controller. The DMA
requires the CPU to provide two additional bus signals:

■ The bus request is an input to the CPU through which DMA controllers ask
for ownership of the bus.

■ The bus grant signals that the bus has been granted to the DMA controller.

162 CHAPTER 4 Bus-Based Computer Systems

A device that can initiate its own bus transfer is known as a bus master . Devices
that do not have the capability to be bus masters do not need to connect to a bus
request and bus grant. The DMA controller uses these two signals to gain control
of the bus using a classic four-cycle handshake. The bus request is asserted by the
DMA controller when it wants to control the bus, and the bus grant is asserted by
the CPU when the bus is ready.

The CPU will finish all pending bus transactions before granting control of the
bus to the DMA controller. When it does grant control, it stops driving the other
bus signals: R/W, address, and so on. Upon becoming bus master, the DMA con-
troller has control of all bus signals (except, of course, for bus request and bus
grant).

Once the DMA controller is bus master,it can perform reads and writes using the
same bus protocol as with any CPU-driven bus transaction. Memory and devices do
not know whether a read or write is performed by the CPU or by a DMA controller.
After the transaction is finished, the DMA controller returns the bus to the CPU by
deasserting the bus request, causing the CPU to deassert the bus grant.

The CPU controls the DMA operation through registers in the DMA controller.
A typical DMA controller includes the following three registers:

■ A starting address register specifies where the transfer is to begin.

■ A length register specifies the number of words to be transferred.

■ A status register allows the DMA controller to be operated by the CPU.

The CPU initiates a DMA transfer by setting the starting address and length reg-
isters appropriately and then writing the status register to set its start transfer bit.
After the DMA operation is complete, the DMA controller interrupts the CPU to tell
it that the transfer is done.

What is the CPU doing during a DMA transfer? It cannot use the bus.As illustrated
in Figure 4.10,if the CPU has enough instructions and data in the cache and registers,
it may be able to continue doing useful work for quite some time and may not notice
the DMA transfer. But once the CPU needs the bus, it stalls until the DMA controller
returns bus mastership to the CPU.

To prevent the CPU from idling for too long, most DMA controllers implement
modes that occupy the bus for only a few cycles at a time. For example, the trans-
fer may be made 4, 8, or 16 words at a time. As illustrated in Figure 4.11, after
each block, the DMA controller returns control of the bus to the CPU and goes to
sleep for a preset period, after which it requests the bus again for the next block
transfer.

4.1.3 System Bus Configurations
A microprocessor system often has more than one bus. As shown in Figure 4.12,
high-speed devices may be connected to a high-performance bus,while lower-speed

4.1 The CPU Bus 163

:DMA :CPU :Bus

Bus master request

CPU stalls

FIGURE 4.10

UML sequence diagram of system activity around a DMA transfer.

devices are connected to a different bus. A small block of logic known as a bridge
allows the buses to connect to each other. There are several good reasons to use
multiple buses and bridges:

■ Higher-speed buses may provide wider data connections.

■ A high-speed bus usually requires more expensive circuits and connectors.
The cost of low-speed devices can be held down by using a lower-speed,
lower-cost bus.

164 CHAPTER 4 Bus-Based Computer Systems

Time

4 words 4 words

CPU

DMA

Bus master request

4 words

FIGURE 4.11

Cyclic scheduling of a DMA request.

CPU

Memory

High-speed
bus

Low-speed
bus

High-speed
device

B
ri

d
ge

Low-speed
device

Low-speed
device

FIGURE 4.12

A multiple bus system.

■ The bridge may allow the buses to operate independently, thereby providing
some parallelism in I/O operations.

In Section 4.5.3, we see that PCs often use this methodology.
Let’s consider the operation of a bus bridge between what we will call a fast bus

and a slow bus as illustrated in Figure 4.13.The bridge is a slave on the fast bus and
the master of the slow bus.The bridge takes commands from the fast bus on which
it is a slave and issues those commands on the slow bus. It also returns the results
from the slow bus to the fast bus—for example, it returns the results of a read on
the slow bus to the fast bus.

The upper sequence of states handles a write from the fast bus to the slow
bus. These states must read the data from the fast bus and set up the handshake
for the slow bus. Operations on the fast and slow sides of the bus bridge should

4.1 The CPU Bus 165

Fast address
enable and fast
write/slow adrs,
slow write

Fast address
enable and fast
read/slow adrs,
slow read

Fast address
enable Slow ack/fast ack

Slow data/fast data, fast ack

Fast data/
slow data

Slow ack

Slow ack

Slow ack

Bridge

Idle

Read
adrs

Read
data

Write
adrs

Write
data

Fast address
enable

Fast
read/write

Fast adrs

Fast data

Fast ack

Fast bus
(slave)

Slow address
enable

Slow
read/write

Slow adrs

Slow data

Slow ack

Slow bus
(master)

FIGURE 4.13

UML state diagram of bus bridge operation.

be overlapped as much as possible to reduce the latency of bus-to-bus transfers.
Similarly, the bottom sequence of states reads from the slow bus and writes the data
to the fast bus.

The bridge serves as a protocol translator between the two bridges as well.
If the bridges are very close in protocol operation and speed,a simple state machine
may be enough. If there are larger differences in the protocol and timing between
the two buses, the bridge may need to use registers to hold some data values
temporarily.

4.1.4 AMBA Bus
Since the ARM CPU is manufactured by many different vendors, the bus provided
off-chip can vary from chip to chip. ARM has created a separate bus specification
for single-chip systems. The AMBA bus [ARM99A] supports CPUs, memories, and
peripherals integrated in a system-on-silicon. As shown in Figure 4.14, the AMBA
specification includes two buses. The AMBA high-performance bus (AHB) is opti-
mized for high-speed transfers and is directly connected to the CPU. It supports
several high-performance features:pipelining,burst transfers, split transactions, and
multiple bus masters.

A bridge can be used to connect the AHB to an AMBA peripherals bus (APB).
This bus is designed to be simple and easy to implement; it also consumes relatively
little power.TheAHB assumes that all peripherals act as slaves, simplifying the logic
required in both the peripherals and the bus controller. It also does not perform
pipelined operations, which simplifies the bus logic.

166 CHAPTER 4 Bus-Based Computer Systems

External
DRAM
controller

SRAM

High-speed
I/O

device

Low-speed
I/O device

Low-speed
I/O device

ARM
CPU

On-chip

AMBA
high-performance bus (AHB)

AMBA
peripherals bus (APB)

B
ri

d
ge

FIGURE 4.14

Elements of the ARM AMBA bus system.

4.2 MEMORY DEVICES
In this section, we introduce the basic types of memory components that are com-
monly used in embedded systems. Now that we understand the operation of the
bus, we are able to understand the pinouts of these memories and how values are
read and written. We also need to understand the varieties of memory cells that are
used to build memories.There are several varieties of both read-only and read/write
memories,each with its own advantages.After discussing some basic characteristics
of memories, we describe RAMs and then ROMs.

4.2.1 Memory Device Organization
The most basic way to characterize a memory is by its capacity, such as 256 MB.
However, manufacturers usually make several versions of a memory of a given size,
each with a different data width. For example, a 256-MB memory may be available
in two versions:

■ As a 64 M � 4-bit array,a single memory access obtains an 8-bit data item,with
a maximum of 226 different addresses.

■ As a 32 M � 8-bit array, a single memory access obtains a 1-bit data item, with
a maximum of 223 different addresses.

The height/width ratio of a memory is known as its aspect ratio. The best
aspect ratio depends on the amount of memory required.

Internally, the data are stored in a two-dimensional array of memory cells as
shown in Figure 4.15. Because the array is stored in two dimensions,the n-bit address
received by the chip is split into a row and a column address (with n � r � c).

4.2 Memory Devices 167

 Address

Enable

Memory
array

Data

R/W

n r

c

FIGURE 4.15

Internal organization of a memory device.

The row and column select a particular memory cell. If the memory’s external
width is 1 bit, the column address selects a single bit; for wider data widths, the
column address can be used to select a subset of the columns. Most memories
include an enable signal that controls the tri-stating of data onto the memory’s
pins. We will see in Section 4.4.1 how the enable pin can be used to easily build
large memories from multiple banks of memory chips. A read/write signal (R/W in
the figure) on read/write memories controls the direction of data transfer;memory
chips do not typically have separate read and write data pins.

4.2.2 Random-Access Memories
Random-access memories can be both read and written. They are called random
access because, unlike magnetic disks, addresses can be read in any order. Most
bulk memory in modern systems is dynamic RAM (DRAM). DRAM is very dense;
it does, however, require that its values be refreshed periodically since the values
inside the memory cells decay over time.

The dominant form of dynamic RAM today is the synchronous DRAMs
(SDRAMs), which uses clocks to improve DRAM performance. SDRAMs use
Row Address Select (RAS) and Column Address Select (CAS) signals to break the
address into two parts, which select the proper row and column in the RAM array.
Signal transitions are relative to the SDRAM clock,which allows the internal SDRAM
operations to be pipelined.

168 CHAPTER 4 Bus-Based Computer Systems

CLK

CS9

RAS9

CAS9

WE9

 ADRS adrs

FIGURE 4.16

Timing diagram for a read on a synchronous DRAM.

As shown in Figure 4.16, transitions on the control signals are related to a clock
[Mic00]. RAS� and CAS� can therefore become valid at the same time. The address
lines are not shown in full detail here;some address lines may not be active depend-
ing on the mode in use. SDRAMs use a separate refresh signal to control refreshing.
DRAM has to be refreshed roughly once per millisecond. Rather than refresh the
entire memory at once,DRAMs refresh part of the memory at a time.When a section
of memory is being refreshed, it cannot be accessed until the refresh is complete.
The memory refresh occurs over fairly few seconds so that each section is refreshed
every few microseconds.

SDRAMs include registers that control the mode in which the SDRAM operates.
SDRAMs support burst modes that allow several sequential addresses to be accessed
by sending only one address. SDRAMs generally also support an interleaved mode
that exchanges pairs of bytes.

Even faster synchronous DRAMs,known as double-data rate (DDR) SDRAMs
or DDR2 and DDR3 SDRAMs, are now in use. The details of DDR operation are
beyond the scope of this book, but the basic capabilities of DDR memories are
similar to those of single-rate SDRAMs; DDRs simply use sophisticated circuit
techniques to perform more operations per clock cycle.

4.3 I/O Devices 169

SIMMs and DIMMs
Memory for PCs is generally purchased as single in-line memory modules
(SIMMs) or double in-line memory modules (DIMMs). A SIMM or DIMM is
a small circuit board that fits into a standard memory socket. A DIMM has two sets
of leads compared to the SIMM’s one. Memory chips are soldered to the circuit
board to supply the desired memory.

4.2.3 Read-Only Memories
Read-only memories (ROMs) are preprogrammed with fixed data.They are very
useful in embedded systems since a great deal of the code, and perhaps some data,
does not change over time. Read-only memories are also less sensitive to radiation-
induced errors.

There are several varieties of ROM available.The first-level distinction to be made
is between factory-programmed ROM (sometimes called mask-programmed
ROM) and field-programmable ROM . Factory-programmed ROMs are ordered
from the factory with particular programming. ROMs can typically be ordered in
lots of a few thousand, but clearly factory programming is useful only when the
ROMs are to be installed in some quantity.

Field-programmable ROMs, on the other hand, can be programmed in the lab.
Flash memory is the dominant form of field-programmable ROM and is electrically
erasable. Flash memory uses standard system voltage for erasing and programming,
allowing it to be reprogrammed inside a typical system.This allows applications such
as automatic distribution of upgrades—the flash memory can be reprogrammed
while downloading the new memory contents from a telephone line. Early flash
memories had to be erased in their entirety; modern devices allow memory to be
erased in blocks. Most flash memories today allow certain blocks to be protected.
A common application is to keep the boot-up code in a protected block but allow
updates to other memory blocks on the device. As a result, this form of flash is
commonly known as boot-block flash.

4.3 I/O DEVICES
In this section we survey some input and output devices commonly used in embed-
ded computing systems. Some of these devices are often found as on-chip devices
in micro-controllers; others are generally implemented separately but are still com-
monly used. Looking at a few important devices now will help us understand both
the requirements of device interfacing in this chapter and the uses of devices in
programming in this and later chapters.

4.3.1 Timers and Counters
Timers and counters are distinguished from one another largely by their use,
not their logic. Both are built from adder logic with registers to hold the current

170 CHAPTER 4 Bus-Based Computer Systems

. . .

D Q D Q

D Q D Q

D Q D Q

Reset register
Count register

Done

5 0

Half
subtractor

Half
subtractor

Half
subtractor

Update

FIGURE 4.17

Internals of a counter/timer.

value,with an increment input that adds one to the current register value. However,
a timer has its count connected to a periodic clock signal to measure time intervals,
while a counter has its count input connected to an aperiodic signal in order to
count the number of occurrences of some external event. Because the same logic
can be used for either purpose, the device is often called a counter/timer .

Figure 4.17 shows enough of the internals of a counter/timer to illustrate its
operation. An n-bit counter/timer uses an n-bit register to store the current state of
the count and an array of half subtractors to decrement the count when the count
signal is asserted. Combinational logic checks when the count equals zero;the done
output signals the zero count. It is often useful to be able to control the time-out,
rather than require exactly 2n events to occur. For this purpose, a reset register
provides the value with which the count register is to be loaded.The counter/timer
provides logic to load the reset register. Most counters provide both cyclic and
acyclic modes of operation. In the cyclic mode,once the counter reaches the done
state, it is automatically reloaded and the counting process continues. In acyclic
mode, the counter/timer waits for an explicit signal from the microprocessor to
resume counting.

A watchdog timer is an I/O device that is used for internal operation of a
system.As shown in Figure 4.18,the watchdog timer is connected into the CPU bus
and also to the CPU’s reset line.The CPU’s software is designed to periodically reset

4.3 I/O Devices 171

Reset

CPU

Time-out

Watchdog
timer

FIGURE 4.18

A watchdog timer.

the watchdog timer,before the timer ever reaches its time-out limit. If the watchdog
timer ever does reach that limit, its time-out action is to reset the processor. In that
case,the presumption is that either a software flaw or hardware problem has caused
the CPU to misbehave. Rather than diagnose the problem, the system is reset to get
it operational as quickly as possible.

4.3.2 A/D and D/A Converters
Analog/digital (A/D) and digital/analog (D/A) converters (typically known
as ADCs and DACs, respectively) are often used to interface nondigital devices to
embedded systems. The design of A/D and D/A converters themselves is beyond
the scope of this book; we concentrate instead on the interface to the micropro-
cessor bus. Because A/D conversion requires more complex circuitry, it requires a
somewhat more complex interface.

Analog/digital conversion requires sampling the analog input before convert-
ing it to digital form. A control signal causes the A/D converter to take a sample
and digitize it.

There are several different types of A/D converter circuits, some of which take a
constant amount of time, while the conversion time of others depends on the sam-
pled value.Variable-time converters provide a done signal so that the microprocessor
knows when the value is ready.

A typical A/D interface has, in addition to its analog inputs, two major digital
inputs. A data port allows A/D registers to be read and written, and a clock input
tells when to start the next conversion.

D/A conversion is relatively simple, so the D/A converter interface generally
includes only the data value. The input value is continuously converted to analog
form.

4.3.3 Keyboards
A keyboard is basically an array of switches, but it may include some internal logic
to help simplify the interface to the microprocessor. In this chapter, we build our
understanding from a single switch to a microprocessor-controlled keyboard.

172 CHAPTER 4 Bus-Based Computer Systems

Switch

 Voltage

Time

FIGURE 4.19

Switch bouncing.

A switch uses a mechanical contact to make or break an electrical circuit.
The major problem with mechanical switches is that they bounce as shown in
Figure 4.19. When the switch is depressed by pressing on the button attached to
the switch’s arm, the force of the depression causes the contacts to bounce several
times until they settle down. If this is not corrected, it will appear that the switch
has been pressed several times,giving false inputs. A hardware debouncing circuit
can be built using a one-shot timer. Software can also be used to debounce switch
inputs. A raw keyboard can be assembled from several switches. Each switch in a
raw keyboard has its own pair of terminals,making raw keyboards impractical when
a large number of keys is required.

More expensive keyboards, such as those used in PCs, actually contain a
microprocessor to preprocess button inputs. PC keyboards typically use a 4-bit
microprocessor to provide the interface between the keys and the computer.
The microprocessor can provide debouncing, but it also provides other functions
as well. An encoded keyboard uses some code to represent which switch is cur-
rently being depressed. At the heart of the encoded keyboard is the scanned array
of switches shown in Figure 4.20. Unlike a raw keyboard, the scanned keyboard
array reads only one row of switches at a time.The demultiplexer at the left side of
the array selects the row to be read. When the scan input is 1, that value is trans-
mitted to one terminal of each key in the row. If the switch is depressed, the 1 is
sensed at that switch’s column. Since only one switch in the column is activated,
that value uniquely identifies a key.The row address and column output can be used
for encoding, or circuitry can be used to give a different encoding.

A consequence of encoding the keyboard is that combinations of keys may not
be represented. For example, on a PC keyboard, the encoding must be chosen so

4.3 I/O Devices 173

Scan

Row

Columns

FIGURE 4.20

A scanned key array.

that combinations such as control-Q can be recognized and sent to the PC. Another
consequence is that rollover may not be allowed. For example, if you press“a,”and
then press “b” before releasing “a,” in most applications you want the keyboard to
send an “a” followed by a “b.” Rollover is very common in typing at even modest
rates. A naive implementation of the encoder circuitry will simply throw away any
character depressed after the first one until all the keys are released. The keyboard
microcontroller can be programmed to provide n-key rollover , so that rollover
keys are sensed, put on a stack, and transmitted in sequence as keys are released.

4.3.4 LEDs
Light-emitting diodes (LEDs) are often used as simple displays by themselves,
and arrays of LEDs may form the basis of more complex displays. Figure 4.21 shows
how to connect an LED to a digital output. A resistor is connected between the
output pin and the LED to absorb the voltage difference between the digital output
voltage and the 0.7 V drop across the LED. When the digital output goes to 0, the
LED voltage is in the device’s off region and the LED is not on.

4.3.5 Displays
A display device may be either directly driven or driven from a frame buffer. Typi-
cally, displays with a small number of elements are driven directly by logic, while
large displays use a RAM frame buffer.

The n-digit array, shown in Figure 4.22, is a simple example of a display that is
usually directly driven. A single-digit display typically consists of seven segments;
each segment may be either an LED or a liquid crystal display (LCD) element.
This display relies on the digits being visible for some time after the drive to the
digit is removed, which is true for both LEDs and LCDs. The digit input is used to
choose which digit is currently being updated, and the selected digit activates its

174 CHAPTER 4 Bus-Based Computer Systems

Digital
logic

Current-limiting
resistor

Digital output

LED

FIGURE 4.21

An LED connected to a digital output.

Digit

Data

. . .

Demux

FIGURE 4.22

An n-digit display.

display elements based on the current data value.The display’s driver is responsible
for repeatedly scanning through the digits and presenting the current value of each
to the display.

A frame buffer is a RAM that is attached to the system bus.The microprocessor
writes values into the frame buffer in whatever order is desired. The pixels in the
frame buffer are generally written to the display in raster order (by tradition, the
screen is in the fourth quadrant) by reading pixels sequentially.

Many large displays are built using LCD. Each pixel in the display is formed by
a single liquid crystal. LCD displays present a very different interface to the system
because the array of pixel LCDs can be randomly accessed. Early LCD panels were
called passive matrix because they relied on a two-dimensional grid of wires to
address the pixels. Modern LCD panels use an active matrix system that puts a
transistor at each pixel to control access to the LCD. Active matrix displays provide
higher contrast and a higher-quality display.

4.4 Component Interfacing 175

Voltage across the screen

Contact

Conductive sheets

Spacer ball

Push

Vx

Vxpos

x position

1

ADC

FIGURE 4.23

Cross section of a resistive touchscreen.

4.3.6 Touchscreens
A touchscreen is an input device overlaid on an output device. The touchscreen
registers the position of a touch to its surface. By overlaying this on a display, the
user can react to information shown on the display.

The two most common types of touchscreens are resistive and capacitive.
A resistive touchscreen uses a two-dimensional voltmeter to sense position. As
shown in Figure 4.23, the touchscreen consists of two conductive sheets separated
by spacer balls. The top conductive sheet is flexible so that it can be pressed to
touch the bottom sheet. A voltage is applied across the sheet; its resistance causes a
voltage gradient to appear across the sheet. The top sheet samples the conductive
sheet’s applied voltage at the contact point. An analog/digital converter is used to
measure the voltage and resulting position. The touchscreen alternates between
x and y position sensing by alternately applying horizontal and vertical voltage
gradients.

4.4 COMPONENT INTERFACING
Building the logic to interface a device to a bus is not too difficult but does take
some attention to detail. We first consider interfacing memory components to the
bus,since that is relatively simple,and then use those concepts to interface to other
types of devices.

176 CHAPTER 4 Bus-Based Computer Systems

4.4.1 Memory Interfacing
If we can buy a memory of the exact size we need, then the memory structure is
simple. If we need more memory than we can buy in a single chip, then we must
construct the memory out of several chips. We may also want to build a memory
that is wider than we can buy on a single chip; for example, we cannot generally
buy a 32-bit-wide memory chip. We can easily construct a memory of a given width
(32 bits, 64 bits, etc.) by placing RAMs in parallel.

We also need logic to turn the bus signals into the appropriate memory signals.
For example, most busses won’t send address signals in row and column form. We
also need to generate the appropriate refresh signals.

4.4.2 Device Interfacing
Some I/O devices are designed to interface directly to a particular bus, forming
glueless interfaces. But glue logic is required when a device is connected to a
bus for which it is not designed.

An I/O device typically requires a much smaller range of addresses than a memory,
so addresses must be decoded much more finely. Some additional logic is required
to cause the bus to read and write the device’s registers. Example 4.1 shows one
style of interface logic.

Example 4.1

A glue logic interface
Below is an interfacing scheme for a simple I/O device.

Reg0R/W

R/W

Regid

Regval

Device

Reg1

Reg2

Reg3

Adrs[0:1]

Adrs[2:a – 1]

Transceiver

R/W

Address

Device
address

DataR/W

=

4.5 Designing with Microprocessors 177

The device has four registers that can be read and written by presenting the register
number on the regid pins, asserting R/W as required, and reading or writing the value on
the regval pins. To interface to the bus, the bottom two bits of the address are used to refer
to registers within the device, and the remaining bits are used to identify the device itself.
The top bits of the address are sent to a comparator for testing against the device address.
The device’s address can be set with switches to allow the address to be easily changed.
When the bus address matches the device’s, the result is used to enable a transceiver for the
data pins. When the transceiver is disabled, the regval pins are disconnected from the data
bus. The comparator’s output is also used to modify the R/W signal: The device’s R/W pin is
given the value (bus R/W � not-equal address), so that when the comparator’s result is not
1, the device’s R/W pin always receives a 1 to avoid inadvertently writing the device registers.

4.5 DESIGNING WITH MICROPROCESSORS
In this section we concentrate on how to create an initial working embedded system
and how to ensure that the system works properly. Section 4.5.1 considers possible
architectures for embedded computing systems. Section 4.5.2 studies techniques for
designing the hardware components of embedded systems. Section 4.5.3 describes
the use of the PC as an embedded computing platform.

4.5.1 System Architecture
We know that an architecture is a set of elements and the relationships between
them that together form a single unit.The architecture of an embedded computing
system is the blueprint for implementing that system—it tells you what components
you need and how you put them together.

The architecture of an embedded computing system includes both hardware and
software elements. Let’s consider each in turn.

The hardware architecture of an embedded computing system is the more obvi-
ous manifestation of the architecture since you can touch it and feel it. It includes
several elements, some of which may be less obvious than others.

■ CPU An embedded computing system clearly contains a microprocessor.
But which one? There are many different architectures, and even within an
architecture we can select between models that vary in clock speed,bus data
width, integrated peripherals, and so on. The choice of the CPU is one of the
most important,but it cannot be made without considering the software that
will execute on the machine.

■ Bus The choice of a bus is closely tied to that of a CPU, since the bus is an
integral part of the microprocessor. But in applications that make intensive
use of the bus due to I/O or other data traffic,the bus may be more of a limiting

178 CHAPTER 4 Bus-Based Computer Systems

factor than the CPU. Attention must be paid to the required data bandwidths
to be sure that the bus can handle the traffic.

■ Memory Once again,the question is not whether the system will have mem-
ory but the characteristics of that memory.The most obvious characteristic is
total size,which depends on both the required data volume and the size of the
program instructions.The ratio of ROM to RAM and selection of DRAM versus
SRAM can have a significant influence on the cost of the system.The speed of
the memory will play a large part in determining system performance.

■ Input and output devices The user’s view of the input and output mech-
anisms may not correspond to the devices connected to the microprocessor.
For example,a set of switches and knobs on a front panel may all be controlled
by a single microcontroller, which is in turn connected to the main CPU. For
a given function, there may be several different devices of varying sophistica-
tion and cost that can do the job. The difficulty of using a particular device,
such as the amount of glue logic required to interface it, may also play a role
in final device selection.

You may not think of programs as having architectures, but well-designed
programs do have structure that represents an architecture. A fundamental task
in software architecture design is partitioning—breaking the functionality into
pieces in a way that makes it easy to implement, test, and modify.

Most embedded systems will do more than one thing—for example, processing
streams of data and handling the user interface. Mixing together different types
of functionality into a single code module leads to spaghetti code, which has
poorly structured control flow,excessive use of global data,and generally unreliable
programs.

Breaking the system’s functionality into pieces that roughly correspond to the
major modes of operation and functions of the device is often a good choice. First,
different types of functionality often require different programming styles, so that
they will naturally fall into different procedures in the code. Second,the functionality
boundaries often correspond to performance requirements. Since at least some of
the software components will almost certainly have to finish executing within a
given deadline, it is important to be able to identify the code that must satisfy the
deadline and to measure the performance of that code.

It is also important to remember that some of the functionality may in fact be
implemented in the I/O devices. You may have a choice between using a simple,
inexpensive device that requires more software support or a more sophisticated and
expensive device that can perform more functions automatically. (An example in
the digital audio domain is �-law scaling,which can be done automatically by some
analog/digital converters.) Using DMA to move data rather than a programmed
loop is another example of using hardware to substitute for software. Most of the
functionality will be in the software, but careful consideration of the hardware
architecture can help simplify the software and make it easier for the software to
meet its performance requirements.

4.5 Designing with Microprocessors 179

4.5.2 Hardware Design
The design complexity of the hardware platform can vary greatly, from a totally
off-the-shelf solution to a highly customized design.

At the board level,the first step is to consider evaluation boards supplied by the
microprocessor manufacturer or another company working in collaboration with
the manufacturer. Evaluation boards are sold for many microprocessor systems;they
typically include the CPU, some memory, a serial link for downloading programs,
and some minimal number of I/O devices. Figure 4.24 shows an ARM evaluation
board manufactured by Sharp. The evaluation board may be a complete solution
or provide what you need with only slight modifications. If the evaluation board is
supplied by the microprocessor vendor, its design (netlist, board layout, etc.) may
be available from the vendor; companies provide such information to make it easy
for customers to use their microprocessors. If the evaluation board comes from a
third party, it may be possible to contract them to design a new board with your
required modifications, or you can start from scratch on a new board design.

The other major task is the choice of memory and peripheral components.
In the case of I/O devices, there are two alternatives for each device: selecting a

Serial
port

Power
supply

Interrupt
switch

Reset
switch

JTAG
port

CPU

FIGURE 4.24

An ARM evaluation board.

180 CHAPTER 4 Bus-Based Computer Systems

component from a catalog or designing one yourself. When shopping for devices
from a catalog, it is important to read data sheets carefully—it may not be trivial to
figure out whether the device does what you need it to do. You should also con-
sider the amount of glue logic required to connect the device to your bus. Simple
peripheral logic can be implemented in programmable logic devices (PLDs),
while more complex units can be built from field-programmable gate arrays
(FPGAs).

4.5.3 The PC as a Platform
Personal computers are often used as platforms for embedded computing. A PC
offers several important advantages—it is a predesigned hardware platform with
a great many features, a wide variety of I/O devices can be purchased for it, and it
provides a rich programming environment. Because a PC-based system does not use
custom hardware,it also carries the resulting disadvantages. It is larger,more power-
hungry, and more expensive than a custom hardware platform would be. However,
for low-volume applications and environments such as factories and offices where
size and power are not critical,using a PC to build an embedded system often makes a
lot of sense.The term personal computer has come to apply to a variety of machines,
including IBM-compatibles, Macs, and others. In this section, we describe a generic
PC architecture with some discussion of features relevant to different types of PCs.
A detailed discussion of any of these platforms is beyond the scope of this book.

As shown in Figure 4.25, a typical PC includes several major hardware com-
ponents:

■ The CPU provides basic computational facilities.

■ RAM is used for program storage.

CPU

CPU bus

TimersDMA
controller

Bus
interface

Bus
interface

Low-speed bus

High-speed
device

High-speed bus

RAM ROM

Device

FIGURE 4.25

Hardware architecture of a typical PC.

4.5 Designing with Microprocessors 181

■ ROM holds the boot program.

■ A DMA controller provides DMA capabilities.

■ Timers are used by the operating system for a variety of purposes.

■ A high-speed bus, connected to the CPU bus through a bridge, allows fast
devices to communicate efficiently with the rest of the system.

■ A low-speed bus provides an inexpensive way to connect simpler devices and
may be necessary for backward compatibility as well.

PCI (Peripheral Component Interconnect) is the dominant high-perfor-
mance system bus today. PCI uses high-speed data transmission techniques and
efficient protocols to achieve high throughput. The original PCI standard allowed
operation up to 33 MHz; at that rate, it could achieve a maximum transfer rate of
264 MB/s using 64-bit transfers. The revised PCI standard allows the bus to run up
to 66 MHz, giving a maximum transfer rate of 524 MB/s with 64-bit wide transfers.

PCI uses wide buses with many data and address bits along with multiple control
bits.The width of the bus both increases the cost of an interface to the bus and makes
the physical connection to the bus more complicated.As a result,PC manufacturers
have introduced serial buses to provide high-speed transfers while keeping the cost
of connecting to the bus relatively low. USB (Universal Serial Bus) and IEEE 1394
are the two major high-speed serial buses. Both of these buses offer high transfer
rates using simple connectors. They also allow devices to be chained together so
that users don’t have to worry about the order of devices on the bus or other details
of connection.

A PC also provides a standard software platform that provides interfaces to the
underlying hardware as well as more advanced services. At the bottom of the soft-
ware platform structure in most PCs is a minimal set of software in ROM. This
software is designed to load the complete operating system from some other device
(disk, network, etc.), and it may also provide low-level hardware interfaces. In the
IBM-compatible PC, the low-level software is known as the basic input/output
system (BIOS). The BIOS provides low-level hardware drivers as well as booting
facilities.The operating system provides high-level drivers,control of executing pro-
cesses, user interfaces, and so on. Because the PC software environment is so rich,
developing embedded code for a PC target is much easier than when a host must be
connected to a CPU in a development target. However, if the software is delivered
directly on a standard version of the operating system, the resulting software pack-
age will require significant amounts of RAM as well as occupy a large disk image.
Developers often create pared down versions of the operating system for delivering
embedded code on PC platforms.

Both the IBM-compatible PC and the Mac provide a combination of hardware
and software that allows devices to provide their own configuration information.
On the IBM-compatible PC, this is known as the Plug-and-Play standard developed
by Microsoft.These standards make it possible to plug in a device and have it work
directly, without hardware or software intervention from the user.

182 CHAPTER 4 Bus-Based Computer Systems

It is now possible to put all the components (except for memory) for a standard
PC on a single chip. A single-chip PC makes the development of certain types of
embedded systems much easier, providing the rich software development of a PC
with the low cost of a single-chip hardware platform.

The ability to integrate a CPU and devices on a single chip has allowed manufac-
turers to provide single-chip systems that do not conform to board-level standards.
Application Example 4.1 describes one such single-chip system,the Intel StrongARM
SA-1100.

Application Example 4.1

System organization of the Intel StrongARM SA-1100 and SA-1111
The StrongARM SA-1100 provides a number of functions besides the ARM CPU:

3.686 MHz clock

32.768 kHz clock

ARM
CPU
core

System
control
module

Bridge

System bus

Peripheral bus

The chip contains two on-chip buses: a high-speed system bus and a lower-speed periph-
eral bus. The chip also uses two different clocks. A 3.686 MHz clock is used to drive the CPU
and high-speed peripherals, and a 32.768 kHz clock is an input to the system control module.
The system control module contains the following peripheral devices:

■ A real-time clock

■ An operating system timer

■ 28 general-purpose I/Os (GPIOs)

■ An interrupt controller

■ A power manager controller

■ A reset controller that handles resetting the processor.

The 32.768 kHz clock’s frequency is chosen to be useful in timing real-time events. The
slower clock is also used by the power manager to provide continued operation of the manager
at a lower clock rate and therefore lower power consumption.

4.6 Development and Debugging 183

The SA-1111 is a companion chip that provides a suite of I/O functions. It connects to the
SA-1100 through its system bus and provides several functions: a USB host controller; PS/2
ports for keyboards, mice, and so on; a PCMCIA interface; pulse-width modulation outputs;
a serial port for digital audio; and an SSP serial port for telecom interfacing.

4.6 DEVELOPMENT AND DEBUGGING
In this section we take a step back from the platform and consider how it is used
during design. We first consider how we can build an effective means for program-
ming and testing an embedded system using hosts.We then see how hosts and other
techniques can be used for debugging embedded systems.

4.6.1 Development Environments
A typical embedded computing system has a relatively small amount of everything,
including CPU horsepower,memory, I/O devices, and so forth. As a result, it is com-
mon to do at least part of the software development on a PC or workstation known
as a host as illustrated in Figure 4.26. The hardware on which the code will finally
run is known as the target . The host and target are frequently connected by a USB
link, but a higher-speed link such as Ethernet can also be used.

The target must include a small amount of software to talk to the host system.
That software will take up some memory, interrupt vectors, and so on,but it should

Host system

Target systemCPU

Serial
port

FIGURE 4.26

Connecting a host and a target system.

184 CHAPTER 4 Bus-Based Computer Systems

generally leave the smallest possible footprint in the target to avoid interfering with
the application software. The host should be able to do the following:

■ load programs into the target,

■ start and stop program execution on the target, and

■ examine memory and CPU registers.

A cross-compiler is a compiler that runs on one type of machine but gener-
ates code for another. After compilation, the executable code is downloaded to the
embedded system by a serial link or perhaps burned in a PROM and plugged in. We
also often make use of host-target debuggers,in which the basic hooks for debugging
are provided by the target and a more sophisticated user interface is created by the
host.

A PC or workstation offers a programming environment that is in many ways
much friendlier than the typical embedded computing platform. But one prob-
lem with this approach emerges when debugging code talks to I/O devices. Since
the host almost certainly will not have the same devices configured in the same
way, the embedded code cannot be run as is on the host. In many cases, a test-
bench program can be built to help debug the embedded code. The testbench
generates inputs to simulate the actions of the input devices; it may also take
the output values and compare them against expected values, providing valu-
able early debugging help. The embedded code may need to be slightly modified
to work with the testbench, but careful coding (such as using the #ifdef direc-
tive in C) can ensure that the changes can be undone easily and without intro-
ducing bugs.

4.6.2 Debugging Techniques
A good deal of software debugging can be done by compiling and executing the
code on a PC or workstation. But at some point it inevitably becomes necessary
to run code on the embedded hardware platform. Embedded systems are usually
less friendly programming environments than PCs. Nonetheless, the resourceful
designer has several options available for debugging the system.

The serial port found on most evaluation boards is one of the most important
debugging tools. In fact, it is often a good idea to design a serial port into an embed-
ded system even if it will not be used in the final product; the serial port can be
used not only for development debugging but also for diagnosing problems in the
field.

Another very important debugging tool is the breakpoint .The simplest form of
a breakpoint is for the user to specify an address at which the program’s execution
is to break. When the PC reaches that address, control is returned to the monitor
program. From the monitor program, the user can examine and/or modify CPU
registers, after which execution can be continued. Implementing breakpoints does

4.6 Development and Debugging 185

not require using exceptions or external devices. Programming Example 4.1 shows
how to use instructions to create breakpoints.

Programming Example 4.1

Breakpoints
A breakpoint is a location in memory at which a program stops executing and returns to the
debugging tool or monitor program. Implementing breakpoints is very simple—you simply
replace the instruction at the breakpoint location with a subroutine call to the monitor. In the
following code, to establish a breakpoint at location 0x40c in some ARM code, we’ve replaced
the branch (B) instruction normally held at that location with a subroutine call (BL) to the
breakpoint handling routine:

0 x 400 MUL r4,r4,r6 0 x 400 MUL r4,r4,r6
0 x 404 ADD r2,r2,r4 ��→ 0 x 404 ADD r2,r2,r4
0 x 408 ADD r0,r0,#1 0 x 408 ADD r0,r0,#1
0 x 40c B loop 0 x 40c BL bkpoint

When the breakpoint handler is called, it saves all the registers and can then display the CPU
state to the user and take commands.

To continue execution, the original instruction must be replaced in the program. If the
breakpoint can be erased, the original instruction can simply be replaced and control returned
to that instruction. This will normally require fixing the subroutine return address, which will
point to the instruction after the breakpoint. If the breakpoint is to remain, then the original
instruction can be replaced and a new temporary breakpoint placed at the next instruction
(taking jumps into account, of course). When the temporary breakpoint is reached, the monitor
puts back the original breakpoint, removes the temporary one, and resumes execution.

The Unix dbx debugger shows the program being debugged in source code form, but that
capability is too complex to fit into some embedded systems. Very simple monitors will require
you to specify the breakpoint as an absolute address, which requires you to know how the
program was linked. A more sophisticated monitor will read the symbol table and allow you to
use labels in the assembly code to specify locations.

Never underestimate the importance of LEDs in debugging. As with serial ports,
it is often a good idea to design a few to indicate the system state even if they will
not normally be seen in use. LEDs can be used to show error conditions, when the
code enters certain routines,or to show idle time activity. LEDs can be entertaining
as well—a simple flashing LED can provide a great sense of accomplishment when
it first starts to work.

When software tools are insufficient to debug the system, hardware aids can be
deployed to give a clearer view of what is happening when the system is running.
The microprocessor in-circuit emulator (ICE) is a specialized hardware tool
that can help debug software in a working embedded system. At the heart of an

186 CHAPTER 4 Bus-Based Computer Systems

in-circuit emulator is a special version of the microprocessor that allows its internal
registers to be read out when it is stopped. The in-circuit emulator surrounds this
specialized microprocessor with additional logic that allows the user to specify
breakpoints and examine and modify the CPU state. The CPU provides as much
debugging functionality as a debugger within a monitor program,but does not take
up any memory. The main drawback to in-circuit emulation is that the machine is
specific to a particular microprocessor, even down to the pinout. If you use several
microprocessors, maintaining a fleet of in-circuit emulators to match can be very
expensive.

The logic analyzer [Ald73] is the other major piece of instrumentation in the
embedded system designer’s arsenal.Think of a logic analyzer as an array of inexpen-
sive oscilloscopes—the analyzer can sample many different signals simultaneously
(tens to hundreds) but can display only 0, 1, or changing values for each. All these
logic analysis channels can be connected to the system to record the activity on
many signals simultaneously. The logic analyzer records the values on the signals
into an internal memory and then displays the results on a display once the mem-
ory is full or the run is aborted. The logic analyzer can capture thousands or even
millions of samples of data on all of these channels, providing a much larger time
window into the operation of the machine than is possible with a conventional
oscilloscope.

A typical logic analyzer can acquire data in either of two modes that are typi-
cally called state and timing modes. To understand why two modes are useful
and the difference between them, it is important to remember that an oscilloscope
trades reduced resolution on the signals for the longer time window. The measure-
ment resolution on each signal is reduced in both voltage and time dimensions.
The reduced voltage resolution is accomplished by measuring logic values (0, 1, x)
rather than analog voltages. The reduction in timing resolution is accomplished by
sampling the signal, rather than capturing a continuous waveform as in an analog
oscilloscope.

State and timing mode represent different ways of sampling the values. Timing
mode uses an internal clock that is fast enough to take several samples per clock
period in a typical system. State mode, on the other hand, uses the system’s own
clock to control sampling, so it samples each signal only once per clock cycle. As a
result, timing mode requires more memory to store a given number of system clock
cycles. On the other hand, it provides greater resolution in the signal for detecting
glitches. Timing mode is typically used for glitch-oriented debugging, while state
mode is used for sequentially oriented problems.

The internal architecture of a logic analyzer is shown in Figure 4.27.The system’s
data signals are sampled at a latch within the logic analyzer; the latch is controlled
by either the system clock or the internal logic analyzer sampling clock,depending
on whether the analyzer is being used in state or timing mode. Each sample is
copied into a vector memory under the control of a state machine.The latch,timing
circuitry, sample memory, and controller must be designed to run at high speed

4.6 Development and Debugging 187

System System
data

Samplesn

Sample
memory

Microprocessor

Clock
gen

Controller

State or timing

System
clock

Vector
address

KeypadDisplay

FIGURE 4.27

Architecture of a logic analyzer.

since several samples per system clock cycle may be required in timing mode.After
the sampling is complete, an embedded microprocessor takes over to control the
display of the data captured in the sample memory.

Logic analyzers typically provide a number of formats for viewing data. One
format is a timing diagram format. Many logic analyzers allow not only customized
displays,such as giving names to signals,but also more advanced display options. For
example, an inverse assembler can be used to turn vector values into microprocessor
instructions.

The logic analyzer does not provide access to the internal state of the com-
ponents, but it does give a very good view of the externally visible signals. That
information can be used for both functional and timing debugging.

4.6.3 Debugging Challenges
Logical errors in software can be hard to track down,but errors in real-time code can
create problems that are even harder to diagnose. Real-time programs are required
to finish their work within a certain amount of time; if they run too long, they can
create very unexpected behavior. Example 4.2 demonstrates one of the problems
that can arise.

Example 4.2

A timing error in real-time code
Let’s consider a simple program that periodically takes an input from an analog/digital con-
verter, does some computations on it, and then outputs the result to a digital/analog converter.

188 CHAPTER 4 Bus-Based Computer Systems

To make it easier to compare input to output and see the results of the bug, we assume that the
computation produces an output equal to the input, but that a bug causes the computation
to run 50% longer than its given time interval. A sample input to the program over several
sample periods follows:

Time

If the program ran fast enough to meet its deadline, the output would simply be a time-
shifted copy of the input. But when the program runs over its allotted time, the output will
become very different. Exactly what happens depends in part on the behavior of the A/D and
D/A converters, so let’s make some assumptions. First, the A/D converter holds its current
sample in a register until the next sample period, and the D/A converter changes its output
whenever it receives a new sample. Next, a reasonable assumption about interrupt systems is
that, when an interrupt is not satisfied and the device interrupts again, the device’s old value
will disappear and be replaced by the new value. The basic situation that develops when the
interrupt routine runs too long is something like this:

1. The A/D converter is prompted by the timer to generate a new value, saves it in the
register, and requests an interrupt.

2. The interrupt handler runs too long from the last sample.

3. The A/D converter gets another sample at the next period.

4. The interrupt handler finishes its first request and then immediately responds to the
second interrupt. It never sees the first sample and only gets the second one.

Thus, assuming that the interrupt handler takes 1.5 times longer than it should, here is how
it would process the sample input:

Time

Input sample

Output sample

The output waveform is seriously distorted because the interrupt routine grabs the wrong
samples and puts the results out at the wrong times.

4.7 System-Level Performance Analysis 189

The exact results of missing real-time deadlines depend on the detailed character-
istics of the I/O devices and the nature of the timing violation.This makes debugging
real-time problems especially difficult. Unfortunately, the best advice is that if a
system exhibits truly unusual behavior, missed deadlines should be suspected.
In-circuit emulators, logic analyzers, and even LEDs can be useful tools in check-
ing the execution time of real-time code to determine whether it in fact meets its
deadline.

4.7 SYSTEM-LEVEL PERFORMANCE ANALYSIS
Bus-based systems add another layer of complication to performance analysis. The
CPU, bus, and memory or I/O device all act as independent elements that can
operate in parallel. In this section, we will develop some basic techniques for
analyzing the performance of bus-based systems.

4.7.1 System-Level Performance Analysis
System-level performance involves much more than the CPU. We often focus on
the CPU because it processes instructions, but any part of the system can affect
total system performance. More precisely, the CPU provides an upper bound on
performance, but any other part of the system can slow down the CPU. Merely
counting instruction execution times is not enough.

Consider the simple system of Figure 4.28. We want to move data from
memory to the CPU to process it. To get the data from memory to the CPU we
must:

■ read from the memory;

■ transfer over the bus to the cache; and

■ transfer from the cache to the CPU.

CPU

cache

memory

bus

data transfer

FIGURE 4.28

System level data flows and performance.

190 CHAPTER 4 Bus-Based Computer Systems

The time required to transfer from the cache to the CPU is included in the
instruction execution time, but the other two times are not.

The most basic measure of performance we are interested in is bandwidth—
the rate at which we can move data. Ultimately, if we are interested in real-time
performance, we are interested in real-time performance measured in seconds. But
often the simplest way to measure performance is in units of clock cycles. However,
different parts of the system will run at different clock rates. We have to make sure
that we apply the right clock rate to each part of the performance estimate when
we convert from clock cycles to seconds.

Bandwidth questions often come up when we are transferring large blocks of
data. For simplicity, let’s start by considering the bandwidth provided by only one
system component,the bus. Consider an image of 320 � 240 pixels,with each pixel
composed of 3 bytes of data. This gives a grand total of 230, 400 bytes of data.
If these images are video frames, we want to check if we can push one frame
through the system within the 1/30 s that we have to process a frame before the
next one arrives.

Let us assume that we can transfer one byte of data every microsecond, which
implies a bus speed of 1 MHz. In this case, we would require 230, 400 �s � 0.23 s
to transfer one frame. That is more than the 0.033 s allotted to the data transfer.
We would have to increase the transfer rate by 7� to satisfy our performance
requirement.

We can increase bandwidth in two ways: We can increase the clock rate of the
bus or we can increase the amount of data transferred per clock cycle. For example,
if we increased the bus to carry four bytes or 32 bits per transfer,we would reduce
the transfer time to 0.058 s. If we could also increase the bus clock rate to 2 MHz,
then we would reduce the transfer time to 0.029 s,which is within our time budget
for the transfer.

How do we know how long it takes to transfer one unit of data? To determine
that, we have to look at the data sheet for the bus. As we saw in Section 4.1.1, a
bus transfer generally takes more than one bus cycle. Burst transfers, which move
to contiguous locations, may be more efficient per byte. We also need to know the
width of the bus—how many bytes per transfer. Finally, we need to know the bus
clock period, which in general will be different from the CPU clock period.

Let’s call the bus clock period P and the bus width W . We will put W in units
of bytes but we could use other measures of width as well. We want to write for-
mulas for the time required to transfer N bytes of data. We will write our basic
formulas in units of bus cycles T , then convert those bus cycle counts to real
time t using the bus clock period P:

t � TP. (4.1)

As shown in Figure 4.29, a basic bus transfer transfers a W -wide set of bytes.
The data transfer itself takes D clock cycles. (Ideally, D � 1, but a memory that
introduces wait states is one example of a transfer that could require D 	 1 cycles.)

4.7 System-Level Performance Analysis 191

DO1 O2

W

FIGURE 4.29

Times and data volumes in a basic bus transfer.

D O

...1 B W2

FIGURE 4.30

Times and data volumes in a burst bus transfer.

Addresses, handshaking, and other activities constitute overhead that may occur
before (O1) or after (O2) the data. For simplicity, we will lump the overhead into
O � O1 � O2. This gives a total transfer time in clock cycles of:

Tbasic(N) � (D � O)
N

W
. (4.2)

As shown in Figure 4.30, a burst transaction performs B transfers of W
bytes each. Each of those transfers will require D clock cycles. The bus also
introduces O cycles of overhead per burst. This gives

Tburst(N) � (BD � O)
N

BW
. (4.3)

Bandwidth questions also come up in situations that we do not normally think
of as communications. Transferring data into and out of components also raises
questions of bandwidth. The simplest illustration of this problem is memory.

The width of a memory determines the number of bits we can read from the
memory in one cycle. That is a form of data bandwidth. We can change the types
of memory components we use to change the memory bandwidth;we may also be
able to change the format of our data to accommodate the memory components.

192 CHAPTER 4 Bus-Based Computer Systems

64 M

1 bit 4 bits

16 M

8 bits

8 M

FIGURE 4.31

Memory aspect ratios.

A single memory chip is not solely specified by the number of bits it can
hold. As shown in Figure 4.31, memories of the same size can have different
aspect ratios. For example, a 64-MB memory that is 1-bit-wide will present
64 million addresses of 1-bit data.The same size memory in a 4-bit-wide format will
have 16 distinct addresses and an 8-bit-wide memory will have 8 million distinct
addresses.

Memory chips do not come in extremely wide aspect ratios. However, we can
build wider memories by using several chips. By choosing chips with the right
aspect ratio, we can build a memory system with the total amount of storage that
we want and that presents the data width that we want.

The memory system width may also be determined by the memory modules we
use. Rather than buy memory chips individually, we may buy memory as SIMMs or
DIMMs.These memories are wide but generally only come in fairly standard widths.

Which aspect ratio is preferable for the overall memory system depends in part
on the format of the data that we want to store in the memory and the speed with
which it must be accessed, giving rise to bandwidth analysis.

We also have to consider the time required to read or write a memory. Once again,
we refer to the component data sheets to find these values. Access times depend
quite a bit on the type of memory chip used as we saw in Section 4.2.2. Page modes
operate similarly to burst modes in buses. If the memory is not synchronous, we
can still refer the times between events back to the bus clock cycle to determine
the number of clock cycles required for an access.

4.7 System-Level Performance Analysis 193

The basic form of the equation for memory transfer time is that of Eq. 4.3,where
O is determined by the page mode overhead and D is the time between successive
transfers.

However, the situation is slightly more complex if the data types do not fit natu-
rally into the width of the memory. Let’s say that we want to store color video pixels
in our memory. A standard pixel is 38-bit color values (red, green, blue, for exam-
ple). A 24-bit-wide memory would allow us to read or write an entire pixel value
in one access. An 8-bit-wide memory, in contrast, would require three accesses for
the pixel. If we have a 32-bit-wide memory, we have two main choices: We could
waste one byte of each transfer or use that byte to store unrelated data, or we
could pack the pixels. In the latter case, the first read would get all of the first
pixel and one byte of the second pixel; the second transfer would get the last
two bytes of the second pixel and the first two bytes of the third pixel; and so
forth.The total number of accesses required to read E data elements of w bits each
out of a memory of width W is:

A �

[(
E

w

)
mod W

]
� 1. (4.4)

The next example applies our bandwidth models to a simple design problem.

Example 4.3

Performance bottlenecks in a bus-based system
Consider a simple bus-based system:

CPU memory

bus

We want to transfer data between the CPU and the memory over the bus. We need to be
able to read a 320 � 240 video frame into the CPU at the rate of 30 frames/s, for a total of
612,000 bytes/s. Which will be the bottleneck and limit system performance: the bus or the
memory?

Let’s assume that the bus has a 1-MHz clock rate (period of 10�6 sec) and is 2 bytes
wide, with D � 1 and O � 3. This gives a total transfer time of

Tbasic � (1 � 3)
612,000

2
� 1,224,000 cycles, (4.5)

194 CHAPTER 4 Bus-Based Computer Systems

t � Tbasic · P � 1,224,000 · 1 � 10�6 � 1.224 sec. (4.6)

Since the total time to transfer one second’s worth of frames is more than 1 s, the bus is not
fast enough for our application.

The memory provides a burst mode with B � 4 but is only 4 bits wide, giving W � 0.5.
For this memory, D � 1 and O � 4. The clock period for this memory is 10�7 s. Then

Tmem � (4 · 1 � 4)
612,000
4 · 0.5

� 2,448,000 cycles, (4.7)

t � Tmem · P � 2,448,000 · 1 � 10�7 � 0.2448 sec (4.8)

The memory requires �1 s to transfer the 30 frames that must be transmitted in 1 s, so it
is fast enough.

One way to explore design trade-offs is to build a spreadsheet:

Bus Memory

Clock period 1.00E � 06 Clock period 1.00E � 08
W 2 W 0.5
D 1 D 1
O 3 O 4

B 4
N 612000 N 612000

Tbasic 1224000 Tmem 2448000
t 1.22E � 00 t 2.45E � 02

If we insert the formulas for bandwidth into the spreadsheet, we can change values like
bus width and clock rate and instantly see their effects on available bandwidth.

4.7.2 Parallelism
Computer systems have multiple components. When the hardware and software
are properly designed, those systems can operate independently for at least part of
the time. When different components of the system operate in parallel, we can get
more work done in a given amount of time.

Direct memory access is a prime example of parallelism. DMA was designed
to off-load memory transfers from the CPU.The CPU can do other useful work while
the DMA transfer is running.

Figure 4.32 shows the paths of data transfers without and with DMA when trans-
ferring from memory to a device. Without DMA, the data must go through the CPU;

4.7 System-Level Performance Analysis 195

CPU memory

DMA

transfer without DMA

device

CPU memory

DMA

transfer without DMA

device

FIGURE 4.32

DMA transfers and parallelism.

the CPU cannot do useful work at that time. Our bandwidth analysis illuminates
an important point about that transfer time—the CPU is tied up for the amount
of time required for the bus transfer. Since buses often operate at slower clock
rates than the CPU, that time can be considerable. We can significantly increase
system performance by overlapping operations on the different units of the sys-
tem. The timing diagrams of Figure 4.33 show timing diagrams for two versions
of a computation. The top timing diagram shows activity in the system when
the CPU first performs some setup operations, then waits for the bus transfer to
complete, then resumes its work. In the bottom timing diagram, we have rewrit-
ten the program on the CPU so that its main work is broken into two sections.
In this case, once the first transfer is done, the CPU can start working on that
data. Meanwhile, thanks to DMA, the second transfer happens on the bus at the
same time. Once that data arrives and the first calculation is finished, the CPU can

196 CHAPTER 4 Bus-Based Computer Systems

CPU

bus

setup

setup calc 1 calc 2

transfer 1, transfer 2

transfer 1

calc 1, calc 2

CPU

bus transfer 2

Sequential Time

TimeParallel

FIGURE 4.33

Sequential and parallel schedules in a bus-based system.

go on to the second part of the computation. The result is that the entire compu-
tation finishes considerably earlier than in the sequential case.

Design Example 4.8 ALARM CLOCK
Our first system design example will be an alarm clock. We use a microprocessor
to read the clock’s buttons and update the time display. Since we now have an
understanding of I/O, we work through the steps of the methodology to go from a
concept to a completed and tested system.

4.8.1 Requirements
The basic functions of an alarm clock are well understood and easy to enumerate.
Figure 4.34 illustrates the front panel design for the alarm clock.The time is shown
as four digits in 12-h format; we use a light to distinguish between AM and PM.
We use several buttons to set the clock time and alarm time. When we press the
hour and minute buttons, we advance the hour and minute, respectively, by one.
When setting the time, we must hold down the set time button while we hit the
hour and minute buttons; the set alarm button works in a similar fashion. We turn
the alarm on and off with the alarm on and alarm off buttons. When the alarm
is activated, the alarm ready light is on. A separate speaker provides the audible
alarm.

4.8 Design Example: Alarm Clock 197

PM

Alarm on Alarm off

Alarm ready

Set time Set alarm Hour Minute

FIGURE 4.34

Front panel of the alarm clock.

We are now ready to create the requirements table.

Name Alarm clock.
Purpose A 24-h digital clock with a single alarm.
Inputs Six push buttons: set time, set alarm,hour,minute, alarm on,

alarm off.
Outputs Four-digit, clock-style output. PM indicator light. Alarm

ready light. Buzzer.
Functions Default mode: The display shows the current time. PM light

is on from noon to midnight.
Hour and minute buttons are used to advance time and
alarm, respectively. Pressing one of these buttons incre-
ments the hour/minute once.
Depress set time button: This button is held down while
hour/minute buttons are pressed to set time. New time is
automatically shown on display.
Depress set alarm button:While this button is held down,
display shifts to current alarm setting; depressing hour/
minute buttons sets alarm value in a manner similar to
setting time.
Alarm on: puts clock in alarm-on state, causes clock to turn
on buzzer when current time reaches alarm time, turns on
alarm ready light.

(Continued)

198 CHAPTER 4 Bus-Based Computer Systems

Alarm off: turns off buzzer, takes clock out of alarm-on state,
turns off alarm ready light.

Performance Displays hours and minutes but not seconds. Should be
accurate within the accuracy of a typical microprocessor
clock signal. (Excessive accuracy may unreasonably drive
up the cost of generating an accurate clock.)

Manufacturing
cost

Consumer product range. Cost will be dominated by the
microprocessor system, not the buttons or display.

Power Powered by AC through a standard power supply.
Physical size and
weight

Small enough to fit on a nightstand with expected weight
for an alarm clock.

4.8.2 Specification
The basic function of the clock is simple,but we do need to create some classes and
associated behaviors to clarify exactly how the user interface works.

Figure 4.35 shows the basic classes for the alarm clock. Borrowing a term from
mechanical watches, we call the class that handles the basic clock operation the
Mechanism class. We have three classes that represent physical elements: Lights*
for all the digits and lights, Buttons* for all the buttons, and Speaker* for the sound
output. The Buttons* class can easily be used directly by Mechanism. As discussed
below, the physical display must be scanned to generate the digits output, so we
introduce the Display class to abstract the physical lights.

The details of the low-level user interface classes are shown in Figure 4.36. The
Buzzer* class allows the buzzer to be turned off; we will use analog electronics
to generate the buzz tone for the speaker. The Buttons* class provides read-only
access to the current state of the buttons. The Lights* class allows us to drive the
lights. However, to save pins on the display, Lights* provides signals for only one
digit,along with a set of signals to indicate which digit is currently being addressed.

Lights*

Speaker*

Buttons*

Display Mechanism
1 1 1 1

1

1

1

1

FIGURE 4.35

Class diagram for the alarm clock.

4.8 Design Example: Alarm Clock 199

digit-val()
digit-scan()
alarm-on-light()
PM-light()

Lights*

set-time()

alarm-light-on()
alarm-light-off()
PM-light-on()
PM-light-off()

time[4]: integer
alarm-indicator: boolean
PM-indicator: boolean

Display

Buttons*

set-time(): boolean
set-alarm(): boolean
alarm-on(): boolean
alarm-off(): boolean
minute(): boolean
hour(): boolean

Speaker*

buzz()

Lights* and
Speaker* are
write-only

Buttons* is
read-only

FIGURE 4.36

Details of low-level class for the alarm clock.

We generate the display by scanning the digits periodically. That function is per-
formed by the Display class, which makes the display appear as an unscanned,
continuous display to the rest of the system.

The Mechanism class is described in Figure 4.37. This class keeps track of the
current time, the current alarm time, whether the alarm has been turned on, and
whether it is currently buzzing. The clock shows the time only to the minute, but
it keeps internal time to the second. The time is kept as discrete digits rather than
a single integer to simplify transferring the time to the display. The class provides
two behaviors,both of which run continuously. First, scan-keyboard is responsible
for looking at the inputs and updating the alarm and other functions as requested
by the user. Second, update-time keeps the current time accurate.

Figure 4.38 shows the state diagram for update-time. This behavior is straight-
forward, but it must do several things. It is activated once per second and must
update the seconds clock. If it has counted 60 s, it must then update the displayed
time; when it does so, it must roll over between digits and keep track of AM-to-PM
and PM-to-AM transitions. It sends the updated time to the display object. It also

200 CHAPTER 4 Bus-Based Computer Systems

Mechanism

scan-keyboard()
update-time()

seconds: integer
PM: boolean
tens-hours, ones-hours: integer
tens-minutes, ones-minutes: integer
alarm-ready: boolean

alarm-tens-hours, alarm-ones-hours: integer
alarm-tens-minutes, alarm-ones-minutes: integer

scan-keyboard
runs periodically

update-time
runs once
per second

FIGURE 4.37

The Mechanism class.

compares the time with the alarm setting and sets the alarm buzzing under proper
conditions.

The state diagram for scan-keyboard is shown in Figure 4.39. This function is
called periodically,frequently enough so that all the user’s button presses are caught
by the system. Because the keyboard will be scanned several times per second,
we do not want to register the same button press several times. If, for example,
we advanced the minutes count on every keyboard scan when the set-time and
minutes buttons were pressed,the time would be advanced much too fast.To make
the buttons respond more reasonably,the function computes button activations—it
compares the current state of the button to the button’s value on the last scan, and
it considers the button activated only when it is on for this scan but was off for the
last scan. Once computing the activation values for all the buttons, it looks at the
activation combinations and takes the appropriate actions. Before exiting, it saves
the current button values for computing activations the next time this behavior is
executed.

4.8.3 System Architecture
The software and hardware architectures of a system are always hard to completely
separate, but let’s first consider the software architecture and then its implications
on the hardware.

The system has both periodic and aperiodic components—the current time must
obviously be updated periodically, and the button commands occur occasionally.

It seems reasonable to have the following two major software components:

■ An interrupt-driven routine can update the current time.The current time will
be kept in a variable in memory. A timer can be used to interrupt periodically
and update the time. As seen in the subsequent discussion of the hardware

4.8 Design Example: Alarm Clock 201

Start

End

Update seconds clock
with rollover

T

F

Rollover?

 AM->PM rollover PM->AM rollover No rollover

PM 5 false

display.set-time(current time)

time >5 alarm and alarm-on?

alarm.buzzer(true)

PM 5 true

Update hh:mm
with rollover

FIGURE 4.38

State diagram for update-time.

architecture, the display must be sent the new value when the minute value
changes. This routine can also maintain the PM indicator.

■ A foreground program can poll the buttons and execute their commands.
Since buttons are changed at a relatively slow rate, it makes no sense to add
the hardware required to connect the buttons to interrupts. Instead, the fore-
ground program will read the button values and then use simple conditional
tests to implement the commands, including setting the current time, setting

202 CHAPTER 4 Bus-Based Computer Systems

Start

Compute button
activations

Activations?

End

 Alarm-on Alarm-off

Alarm-ready 5
true

Alarm-ready 5
false
alarm.buzzer(false)

Increment time tens
with rollover and AM/PM

Increment time ones
with rollover and AM/PM

Save button states for next activation

Set-time and not set-alarm
and hours

Set-time and not set-alarm
and minutes

FIGURE 4.39

State diagram for scan-keyboard.

the alarm,and turning off the alarm.Another routine called by the foreground
program will turn the buzzer on and off based on the alarm time.

An important question for the interrupt-driven current time handler is how often
the timer interrupts occur. A 1-min interval would be very convenient for the soft-
ware, but a one-minute timer would require a large number of counter bits. It is
more realistic to use a one-second timer and to use a program variable to count the
seconds in a minute.

The foreground code will be implemented as a while loop:

while (TRUE) {
read_buttons(button_values);/* read inputs */
process_command(button_values);/* do commands */
check_alarm();/* decide whether to turn on the alarm */

}

The loop first reads the buttons using read_buttons(). In addition to reading
the current button values from the input device, this routine must preprocess the

4.8 Design Example: Alarm Clock 203

Time

Button
event

Button
input

FIGURE 4.40

Preprocessing button inputs.

button values so that the user interface code will respond properly. The buttons
will remain depressed for many sample periods since the sample rate is much faster
than any person can push and release buttons.We want to make sure that the clock
responds to this as a single depression of the button,not one depression per sample
interval. As shown in Figure 4.40, this can be done by performing a simple edge
detection on the button input—the button event value is 1 for one sample period
when the button is depressed and then goes back to 0 and does not return to 1 until
the button is depressed and then released. This can be accomplished by a simple
two-state machine.

The process_command() function is responsible for responding to button
events. The check_alarm() function checks the current time against the alarm
time and decides when to turn on the buzzer. This routine is kept separate from
the command processing code since the alarm must go on when the proper time
is reached, independent of the button inputs.

We have determined from the software architecture that we will need a timer
connected to the CPU. We will also need logic to connect the buttons to the CPU
bus. In addition to performing edge detection on the button inputs, we must also
of course debounce the buttons.

The final step before starting to write code and build hardware is to draw the
state transition graph for the clock’s commands.That diagram will be used to guide
the implementation of the software components.

4.8.4 Component Design and Testing
The two major software components,the interrupt handler and the foreground code,
can be implemented relatively straightforwardly. Since most of the functionality of
the interrupt handler is in the interruption process itself, that code is best tested
on the microprocessor platform. The foreground code can be more easily tested
on the PC or workstation used for code development. We can create a testbench

204 CHAPTER 4 Bus-Based Computer Systems

for this code that generates button depressions to exercise the state machine. We
will also need to simulate the advancement of the system clock. Trying to directly
execute the interrupt handler to control the clock is probably a bad idea—not only
would that require some type of emulation of interrupts, but it would require us to
count interrupts second by second. A better testing strategy is to add testing code
that updates the clock, perhaps once per four iterations of the foreground while
loop.

The timer will probably be a stock component, so we would then focus on
implementing logic to interface to the buttons,display,and buzzer.The buttons will
require debouncing logic. The display will require a register to hold the current
display value in order to drive the display elements.

4.8.5 System Integration and Testing
Because this system has a small number of components, system integration is
relatively easy. The software must be checked to ensure that debugging code
has been turned off. Three types of tests can be performed. First, the clock’s
accuracy can be checked against a reference clock. Second, the commands
can be exercised from the buttons. Finally, the buzzer’s functionality should be
verified.

SUMMARY
The microprocessor is only one component in an embedded computing system—
memory and I/O devices are equally important. The microprocessor bus serves as
the glue that binds all these components together. Hardware platforms for embed-
ded systems are often built around common platforms with appropriate amounts
of memory and I/O devices added on; low-level monitor software also plays an
important role in these systems.

What We Learned

■ CPU buses are built on handshaking protocols.

■ A variety of memory components are available, which vary widely in speed,
capacity, and other capabilities.

■ An I/O device uses logic to interface to the bus so that the CPU can read and
write the device’s registers.

■ Embedded systems can be debugged using a variety of hardware and software
methods.

■ System-level performance depends not just on the CPU, but the memory and
bus as well.

Questions 205

FURTHER READING
Shanley and Anderson [Min95] describe the PCI bus in detail. Dahlin [Dah00]
describes how to interface to a touchscreen. Collins [Col97] describes the design of
microprocessor in-circuit emulators. Earnshaw et al. [Ear97] describe an advanced
debugging environment for the ARM architecture.

QUESTIONS
Q4-1 Draw a UML sequence diagram that shows a four-cycle handshake between

a bus master and a device.

Q4-2 Draw a timing diagram with the following signals (where [t1, t2] is the time
interval starting at t1 and ending at t2):

a. Signal A is stable [0, 10], changing [10, 15], stable [15, 30].

b. Signal B is 1 [0, 5], falling [5, 7], 0 [7, 20], changing [20, 30].

c. Signal C is changing [0, 10],0 [10, 15],rising [15, 18],1 [18, 25],changing
[25, 30].

Q4-3 Draw a timing diagram for a write operation with no wait states.

Q4-4 Draw a timing diagram for a read operation on a bus in which the read
includes two wait states.

Q4-5 Draw a timing diagram for a write operation on a bus in which the write
takes two wait states.

Q4-6 Draw a timing diagram for a burst write operation that writes four locations.

Q4-7 Draw a UML state diagram for a burst read operation with wait states. One
state diagram is for the bus master and the other is for the device being
read.

Q4-8 Draw a UML sequence diagram for a burst read operation with wait states.

Q4-9 Draw timing diagrams for

a. A device becoming bus master.

b. The device returning control of the bus to the CPU.

Q4-10 Draw a timing diagram that shows a complete DMA operation, including
handing off the bus to the DMA controller, performing the DMA transfer,
and returning bus control back to the CPU.

Q4-11 Draw UML state diagrams for a bus mastership transaction in which one side
shows the CPU as the default bus master and the other shows the device
that can request bus mastership.

206 CHAPTER 4 Bus-Based Computer Systems

Q4-12 Draw a UML sequence diagram for a bus mastership request, grant, and
return.

Q4-13 Draw a UML sequence diagram for a complete DMA transaction, includ-
ing the DMA controller requesting the bus, the DMA transaction itself, and
returning control of the bus to the CPU.

Q4-14 Draw a UML sequence diagram showing a read operation across a bus bridge.

Q4-15 Draw a UML sequence diagram showing a write operation with wait states
across a bus bridge.

Q4-16 If you have a choice among several DRAMs of the same capacity but with
different data widths, when would you want to use a narrower memory?
When would you want to use a taller memory?

Q4-17 Draw a UML sequence diagram for a read transaction that includes a DRAM
refresh operation.The sequence diagram should include the CPU,the DRAM
interface, and the DRAM internals to show the refresh itself.

Q4-18 Design the logic required to build a 64 M � 32-bit memory out of 16 M � 32
memories.

Q4-19 Design the logic required to build a 512 M � 16 memory out of 256 M � 4
memories.

Q4-20 Design the logic required to build a 1G � 16 memory out of 256 M � 4
memories.

Q4-21 Draw a UML class diagram that describes a hardware timer/counter. The
device can be loaded with a count value. It can decrement the count down
to zero based either on a bus signal or by counting some multiple of clock
cycles.

Q4-22 Draw a UML class diagram for an analog/digital converter.

Q4-23 Draw a UML class diagram for a digital/analog converter.

Q4-24 Write ARM assembly language code that handles a breakpoint. It should
save the necessary registers, call a subroutine to communicate with the
host, and upon return from the host, cause the breakpointed instruction to
be properly executed.

Q4-25 Assume an A/D converter is supplying samples at 44.1 kHz.

a. How much time is available per sample for CPU operations?

b. If the interrupt handler executes 100 instructions obtaining the sample
and passing it onto the application routine, how many instructions can
be executed on a 20 MHz RISC processor that executes 1 instruction per
cycle?

Lab Exercises 207

Q4-26 If an interrupt handler executes for too long and the next interrupt occurs
before the last call to the handler has finished, what happens?

Q4-27 Consider a system in which an interrupt handler passes on samples to an
FIR filter program that runs in the background.

a. If the interrupt handler takes too long, how does the FIR filter’s output
change?

b. If the FIR filter code takes too long, how does its output change?

Q4-28 Assume that your microprocessor implements an ICE instruction that asserts
a bus signal that causes a microprocessor in-circuit emulator to start. Also
assume that the microprocessor allows all internal registers to be observed
and controlled through a boundary scan chain. Draw a UML sequence
diagram of the ICE operation, including execution of the ICE instruction,
uploading the microprocessor state to the ICE, and returning control to
the microprocessor’s program. The sequence diagram should include the
microprocessor, the microprocessor in-circuit emulator, and the user.

Q4-29 We are given a 1-word wide bus that supports single-word and burst trans-
fers. The overhead of the single-word transfer is 2 clock cycles. Plot the
breakeven point between single-word and burst transfers for several values
of burst overhead—for each value of overhead, plot the length of burst
transfer at which the burst-transfer is as fast as a series of single-word
transfers. Plot breakeven for burst overhead values of 0, 1, 2, and 3 cycles.

Q4-30 You are designing a bus-based computer system: The input device I1 sends
its data to program P1;P1 sends its output to output device O1. Is there any
way to overlap bus transfers and computations in this system?

LAB EXERCISES
L4-1 Use an instruction-based simulator to simulate a program. How fast was the

simulator? Did you have to make any adjustments to your program in order to
make it simulate properly?

L4-2 Use a logic analyzer to view system activity on your bus.

L4-3 If your logic analyzer is capable of on-the-fly disassembly, use it to display bus
activity in the form of instructions, rather than simply 1s and 0s.

L4-4 Attach LEDs to your system bus so that you can monitor its activity. For
example, use an LED to monitor the read/write line on the bus.

L4-5 Design logic to interface an I/O device to your microprocessor.

L4-6 Have someone else deliberately introduce a bug into one of your programs,
and then use the appropriate debugging tools to find and correct the bug.

This page intentionally left blank

CHAPTER

5Program Design and
Analysis

■ Some useful components for embedded software.

■ Models of programs, such as data flow and control flow graphs.

■ An introduction to compilation methods.

■ Analyzing and optimizing programs for performance, size, and power
consumption.

■ How to test programs to verify their correctness.

■ A software modem.

INTRODUCTION
In this chapter we study in detail the process of programming embedded proces-
sors.The creation of embedded programs is at the heart of embedded system design.
If you are reading this book,you almost certainly have an understanding of program-
ming, but designing and implementing embedded programs is different and more
challenging than writing typical workstation or PC programs. Embedded code must
not only provide rich functionality, it must also often run at a required rate to meet
system deadlines, fit into the allowed amount of memory, and meet power con-
sumption requirements. Designing code that simultaneously meets multiple design
constraints is a considerable challenge, but luckily there are techniques and tools
that we can use to help us through the design process. Making sure that the program
works is also a challenge, but once again methods and tools come to our aid.

Throughout the discussion we concentrate on high-level programming langu-
ages, specifically C. High-level languages were once shunned as too inefficient for
embedded microcontrollers,but better compilers,more compiler-friendly architec-
tures, and faster processors and memory have made high-level language programs
common. Some sections of a program may still need to be written in assembly lan-
guage if the compiler doesn’t give sufficiently good results, but even when coding
in assembly language it is often helpful to think about the program’s functionality
in high-level form. Many of the analysis and optimization techniques that we study
in this chapter are equally applicable to programs written in assembly language.

The next section talks about some software components that are commonly
used in embedded software. Section 5.2 introduces the control/data flow graph as a
model for high-level language programs (which can also be applied to programs 209

210 CHAPTER 5 Program Design and Analysis

written originally in assembly language). Section 5.3 reviews the assembly and
linking process and Section 5.4 reviews as background the basic steps in com-
pilation. Section 5.5 discusses code optimization. We talk about optimization
techniques specific to embedded computing in the next three sections: perfor-
mance in Section 5.6, energy consumption in Section 5.8, and size in Section 5.9.
Section 5.6 discusses the analysis of software performance while Section 5.7 intro-
duces techniques to optimize software performance. Section 5.8 discusses energy
and power optimization while Section 5.9 talks about optimizing programs for size.
In Section 5.10,we discuss techniques for ensuring that the programs you write are
correct. We close with a software modem as a design example in Section 5.11.

5.1 COMPONENTS FOR EMBEDDED PROGRAMS
In this section, we consider code for three structures or components that are com-
monly used in embedded software: the state machine, the circular buffer, and the
queue. State machines are well suited to reactive systems such as user interfaces;
circular buffers and queues are useful in digital signal processing.

5.1.1 State Machines
When inputs appear intermittently rather than as periodic samples, it is often con-
venient to think of the system as reacting to those inputs. The reaction of most
systems can be characterized in terms of the input received and the current state
of the system.This leads naturally to a finite-state machine style of describing the
reactive system’s behavior. Moreover, if the behavior is specified in that way, it is
natural to write the program implementing that behavior in a state machine style.
The state machine style of programming is also an efficient implementation of such
computations. Finite-state machines are usually first encountered in the context
of hardware design. Programming Example 5.1 shows how to write a finite-state
machine in a high-level programming language.

Programming Example 5.1

A software state machine

No seat/
buzzer off

Belt/
buzzer off

No seat/–

No belt/timer on

No belt
and no
timer/–

Seat/timer on

No seat/–

Belt/–

Belted

SeatedBuzzer

Idle

Timer/buzzer on

Inputs/outputs
(2 5 no action)

5.1 Components for Embedded Programs 211

The behavior we want to implement is a simple seat belt controller [Chi94]. The controller’s
job is to turn on a buzzer if a person sits in a seat and does not fasten the seat belt within a
fixed amount of time. This system has three inputs and one output. The inputs are a sensor for
the seat to know when a person has sat down, a seat belt sensor that tells when the belt is fas-
tened, and a timer that goes off when the required time interval has elapsed. The output is the
buzzer. Appearing below is a state diagram that describes the seat belt controller’s behavior.

The idle state is in force when there is no person in the seat. When the person sits down,
the machine goes into the seated state and turns on the timer. If the timer goes off before
the seat belt is fastened, the machine goes into the buzzer state. If the seat belt goes on first,
it enters the belted state. When the person leaves the seat, the machine goes back to idle.

To write this behavior in C, we will assume that we have loaded the current values of all
three inputs (seat, belt, timer) into variables and will similarly hold the outputs in variables
temporarily (timer_on, buzzer_on). We will use a variable named state to hold the current state
of the machine and a switch statement to determine what action to take in each state. The
code follows:

#define IDLE 0
#define SEATED 1
#define BELTED 2
#define BUZZER 3

switch (state) { /* check the current state */
case IDLE:

if (seat) { state = SEATED; timer_on = TRUE; }
/* default case is self-loop */
break;

case SEATED:
if (belt) state = BELTED; /* won't hear the

buzzer */
else if (timer) state = BUZZER; /* didn't put on

belt in time */
/* default is self-loop */
break;

case BELTED:
if (!seat) state = IDLE; /* person left */
else if (!belt) state = SEATED; /* person still

in seat */
break;

case BUZZER:
if (belt) state = BELTED; /* belt is on—turn off

buzzer */
else if (!seat) state = IDLE; /* no one in

seat—turn off buzzer */
break;

}

212 CHAPTER 5 Program Design and Analysis

This code takes advantage of the fact that the state will remain the same unless explicitly
changed; this makes self-loops back to the same state easy to implement. This state machine
may be executed forever in a while (TRUE) loop or periodically called by some other code. In
either case, the code must be executed regularly so that it can check on the current value of
the inputs and, if necessary, go into a new state.

5.1.2 Stream-Oriented Programming and Circular Buffers
The data stream style makes sense for data that comes in regularly and must be
processed on the fly. The FIR filter of Example 2.5 is a classic example of stream-
oriented processing. For each sample, the filter must emit one output that depends
on the values of the last n inputs. In a typical workstation application, we would
process the samples over a given interval by reading them all in from a file and then
computing the results all at once in a batch process. In an embedded system we
must not only emit outputs in real time, but we must also do so using a minimum
amount of memory.

The circular buffer is a data structure that lets us handle streaming data in an
efficient way. Figure 5.1 illustrates how a circular buffer stores a subset of the data
stream. At each point in time, the algorithm needs a subset of the data stream that
forms a window into the stream.The window slides with time as we throw out old
values no longer needed and add new values. Since the size of the window does not

1

1

2

3

4

5

2

3

4

2 3 4 5 6

Time t

Time

Time t 1 1

Time t 1 1Time t

Circular buffer

Data stream

FIGURE 5.1

A circular buffer for streaming data.

5.1 Components for Embedded Programs 213

change, we can use a fixed-size buffer to hold the current data. To avoid constantly
copying data within the buffer, we will move the head of the buffer in time. The
buffer points to the location at which the next sample will be placed;every time we
add a sample, we automatically overwrite the oldest sample, which is the one that
needs to be thrown out. When the pointer gets to the end of the buffer, it wraps
around to the top. Programming Example 5.2 provides an efficient implementation
of a circular buffer.

Programming Example 5.2

A circular buffer implementation of an FIR filter
Appearing below are the declarations for the circular buffer and filter coefficients, assuming
that N , the number of taps in the filter, has been previously defined.

int circ_buffer[N]; /* circular buffer for data */
int circ_buffer_head = 0; /* current head of the buffer */
int c[N]; /* filter coefficients (constants) */

To write C code for a circular buffer-based FIR filter, we need to modify the original loop slightly.
Because the 0th element of data may not be in the 0th element of the circular buffer, we have
to change the way in which we access the data. One of the implications of this is that we need
separate loop indices for the circular buffer and coefficients.

int f, /* loop counter */
ibuf, /* loop index for the circular buffer */
ic; /* loop index for the coefficient array */

for (f = 0, ibuf = circ_buffer_head, ic = 0;
ic < N;
ibuf = (ibuf == (N – 1) ? 0 : ibuf++),ic++)
f = f + c[ic] * circ_buffer[ibuf];

The above code assumes that some other code, such as an interrupt handler, is replacing the
last element of the circular buffer at the appropriate times. The statement ibuf � (ibuf ��

(N � 1) ? 0 : ibuf��) is a shorthand C way of incrementing ibuf such that it returns to 0 after
reaching the end of the circular buffer array.

5.1.3 Queues
Queues are also used in signal processing and event processing. Queues are used
whenever data may arrive and depart at somewhat unpredictable times or when
variable amounts of data may arrive. A queue is often referred to as an elastic
buffer .

One way to build a queue is with a linked list. This approach allows the queue
to grow to an arbitrary size. But in many applications we are unwilling to pay the
price of dynamically allocating memory. Another way to design the queue is to use

214 CHAPTER 5 Program Design and Analysis

an array to hold all the data. We used a circular buffer in Example 3.5 to manage
interrupt-driven data; here we will develop a non-interrupt version. Programming
Example 5.3 gives C code for a queue that is built from an array.

Programming Example 5.3

A buffer-based queue
The first step in designing the queue is to declare the array that we will use for the buffer:

#define Q_SIZE 32 /* your queue size may vary */
#define Q_MAX (Q_SIZE-1) /* this is the maximum index value

into the array */
int q[Q_SIZE]; /* the array for our queue */

We will use two variables to keep track of the state of the queue:

int head, tail; /* the position of the head and the tail in
the queue */

As our initialization code shows, we initialize them to the same position. As we add a value
to the tail of the queue, we will increment tail. Similarly, when we remove a value from the
head, we will increment head. When we reach the end of the array, we must wrap around
these values—for example, when we add a value into the last element of q, the new value of
tail becomes the 0th entry of the array.

void initialize_queue() {
head = 0;
tail = Q_MAX;
}

A useful function adds one to a value with wraparound:

Int wrap(int i) { /* increment with wraparound for queue
size */

return ((i+1) % Q_SIZE);
}

We need to check for two error conditions: removing from an empty queue and adding to a
full queue. In the first case, we know the queue is empty if head �� wrap(tail). In the second
case, we know the queue is full if incrementing tail will cause it to equal head. Testing for
fullness, however, is a little harder since we have to worry about wraparound.

Here is the code for adding an element to the tail of the queue, which is known as
enqueueing:

enqueue(int val) {
/* check for a full queue */
if (wrap(wrap(tail) == head) error(ENQUEUE_ERROR);

5.2 Models of Programs 215

/* update the tail */
tail = wrap(tail);
/* add val to the tail of the queue */
q[tail] = val;
}

And here is the code for removing an element from the head of the queue, known as
dequeueing:

int dequeue() {
int returnval; /* use this to remember the value that

you will return */
/* check for an empty queue */
if (head == wrap(tail)) error(DEQUEUE_ERROR);
/* remove from the head of the queue */
returnval = q[head];
/* update head */

head = wrap(head);
/* return the value */
return returnval;
}

5.2 MODELS OF PROGRAMS
In this section, we develop models for programs that are more general than source
code. Why not use the source code directly? First, there are many different types
of source code—assembly languages, C code, and so on—but we can use a single
model to describe all of them. Once we have such a model, we can perform many
useful analyses on the model more easily than we could on the source code.

Our fundamental model for programs is the control/data flow graph (CDFG).
(We can also model hardware behavior with the CDFG.) As the name implies, the
CDFG has constructs that model both data operations (arithmetic and other compu-
tations) and control operations (conditionals). Part of the power of the CDFG comes
from its combination of control and data constructs. To understand the CDFG, we
start with pure data descriptions and then extend the model to control.

5.2.1 Data Flow Graphs
A data flow graph is a model of a program with no conditionals. In a high-level
programming language,a code segment with no conditionals—more precisely,with
only one entry and exit point—is known as a basic block. Figure 5.2 shows a simple
basic block. As the C code is executed, we would enter this basic block at the
beginning and execute all the statements.

216 CHAPTER 5 Program Design and Analysis

w 5 a 1 b;
x 5 a 2 c;
y 5 x 1 d;
x 5 a 1 c;
z 5 y 1 e;

FIGURE 5.2

A basic block in C.

 w 5 a1b;
x1 5 a2c;
 y 5 x11d;
x2 5 a1c;
 z 5 y1e;

FIGURE 5.3

The basic block in single-assignment form.

Before we are able to draw the data flow graph for this code we need to modify
it slightly.There are two assignments to the variable x—it appears twice on the left
side of an assignment. We need to rewrite the code in single-assignment form,
in which a variable appears only once on the left side. Since our specification is
C code, we assume that the statements are executed sequentially, so that any use
of a variable refers to its latest assigned value. In this case, x is not reused in this
block (presumably it is used elsewhere), so we just have to eliminate the multiple
assignment to x. The result is shown in Figure 5.3, where we have used the names
x1 and x2 to distinguish the separate uses of x.

The single-assignment form is important because it allows us to identify a unique
location in the code where each named location is computed. As an introduction
to the data flow graph, we use two types of nodes in the graph—round nodes
denote operators and square nodes represent values.The value nodes may be either
inputs to the basic block, such as a and b, or variables assigned to within the block,
such as w and x1. The data flow graph for our single-assignment code is shown in
Figure 5.4.The single-assignment form means that the data flow graph is acyclic—if
we assigned to x multiple times, then the second assignment would form a cycle in
the graph including x and the operators used to compute x. Keeping the data flow
graph acyclic is important in many types of analyses we want to do on the graph. (Of
course,it is important to know whether the source code actually assigns to a variable
multiple times, because some of those assignments may be mistakes. We consider
the analysis of source code for proper use of assignments in Section 5.10.1).

The data flow graph is generally drawn in the form shown in Figure 5.5. Here,
the variables are not explicitly represented by nodes. Instead, the edges are labeled
with the variables they represent.As a result,a variable can be represented by more

5.2 Models of Programs 217

x2

a b c d e

2

y

1

1

w

1

x1

1

z

FIGURE 5.4

An extended data flow graph for our sample basic block.

than one edge. However, the edges are directed and all the edges for a variable must
come from a single source. We use this form for its simplicity and compactness.

The data flow graph for the code makes the order in which the operations are
performed in the C code much less obvious. This is one of the advantages of the
data flow graph. We can use it to determine feasible reorderings of the operations,
which may help us to reduce pipeline or cache conflicts. We can also use it when
the exact order of operations simply doesn’t matter. The data flow graph defines a
partial ordering of the operations in the basic block. We must ensure that a value
is computed before it is used, but generally there are several possible orderings of
evaluating expressions that satisfy this requirement.

5.2.2 Control/Data Flow Graphs
A CDFG uses a data flow graph as an element,adding constructs to describe control.
In a basic CDFG, we have two types of nodes: decision nodes and data flow
nodes. A data flow node encapsulates a complete data flow graph to represent a
basic block.We can use one type of decision node to describe all the types of control
in a sequential program. (The jump/branch is, after all, the way we implement all
those high-level control constructs.)

218 CHAPTER 5 Program Design and Analysis

a

x2
x1

w

b c d e

2

y

z

1

11

1

FIGURE 5.5

Standard data flow graph for our sample basic block.

Figure 5.6 shows a bit of C code with control constructs and the CDFG con-
structed from it. The rectangular nodes in the graph represent the basic blocks.
The basic blocks in the C code have been represented by function calls for simplic-
ity. The diamond-shaped nodes represent the conditionals. The node’s condition
is given by the label, and the edges are labeled with the possible outcomes of
evaluating the condition.

Building a CDFG for a while loop is straightforward, as shown in Figure 5.7.The
while loop consists of both a test and a loop body, each of which we know how to
represent in a CDFG. We can represent for loops by remembering that, in C, a for
loop is defined in terms of a while loop. The following for loop

for (i = 0; i < N; i++) {
loop_body();
}

is equivalent to

i = 0;
while (i < N) {
loop_body();
i++;
}

5.2 Models of Programs 219

if (cond1)
 basic_block_1();
else
 basic_block_2();
basic_block_3();
switch (test1) {
 case c1: basic_block_4(); break;
 case c2: basic_block_5(); break;
 case c3: basic_block_6(): break;
}

cond1 basic_block_1()

basic_block_2()

basic_block_3()

basic_block_4() basic_block_5() basic_block_6()

test1 c3
c2

c1

C code

CDFG

T

F

. . .

FIGURE 5.6

C code and its CDFG.

For a complete CDFG model, we can use a data flow graph to model each data
flow node. Thus, the CDFG is a hierarchical representation—a data flow CDFG can
be expanded to reveal a complete data flow graph.

An execution model for a CDFG is very much like the execution of the pro-
gram it represents.The CDFG does not require explicit declaration of variables,but
we assume that the implementation has sufficient memory for all the variables.

220 CHAPTER 5 Program Design and Analysis

C code

CDFG

F

T

while (a < b) {
 a 5 proc1(a,b);
 b 5 proc2(a,b);
}

a < b

a 5 proc1(a,b);
b 5 proc2(a,b);

FIGURE 5.7

CDFG for a while loop.

We can define a state variable that represents a program counter in a CPU. (When
studying a drawing of a CDFG,a finger works well for keeping track of the program
counter state.) As we execute the program, we either execute the data flow node
or compute the decision in the decision node and follow the appropriate edge,
depending on the type of node the program counter points on. Even though the
data flow nodes may specify only a partial ordering on the data flow computations,
the CDFG is a sequential representation of the program.There is only one program
counter in our execution model of the CDFG, and operations are not executed in
parallel.

The CDFG is not necessarily tied to high-level language control structures. We
can also build a CDFG for an assembly language program. A jump instruction cor-
responds to a nonlocal edge in the CDFG. Some architectures, such as ARM and
many VLIW processors, support predicated execution of instructions, which may
be represented by special constructs in the CDFG.

5.3 ASSEMBLY, LINKING, AND LOADING
Assembly and linking are the last steps in the compilation process—they turn a list
of instructions into an image of the program’s bits in memory. Loading actually puts
the program in memory so that it can be executed. In this section, we survey the
basic techniques required for assembly linking to help us understand the complete
compilation and loading process.

5.3 Assembly, Linking, and Loading 221

High-level
language
code

Assembly
code

Object
code

Linker

Executable
binary

Compiler Assembler

Execution

Loader

FIGURE 5.8

Program generation from compilation through loading.

Figure 5.8 highlights the role of assemblers and linkers in the compilation
process. This process is often hidden from us by compilation commands that
do everything required to generate an executable program. As the figure shows,
most compilers do not directly generate machine code, but instead create the
instruction-level program in the form of human-readable assembly language. Gene-
rating assembly language rather than binary instructions frees the compiler writer
from details extraneous to the compilation process, which includes the instruction
format as well as the exact addresses of instructions and data.The assembler’s job is
to translate symbolic assembly language statements into bit-level representations of
instructions known as object code.The assembler takes care of instruction formats
and does part of the job of translating labels into addresses. However,since the pro-
gram may be built from many files, the final steps in determining the addresses of
instructions and data are performed by the linker, which produces an executable
binary file.That file may not necessarily be located in the CPU’s memory,however,
unless the linker happens to create the executable directly in RAM. The program
that brings the program into memory for execution is called a loader .

The simplest form of the assembler assumes that the starting address of the
assembly language program has been specified by the programmer. The addresses
in such a program are known as absolute addresses. However, in many cases,
particularly when we are creating an executable out of several component files,we
do not want to specify the starting addresses for all the modules before assembly—
if we did, we would have to determine before assembly not only the length of
each program in memory but also the order in which they would be linked into
the program. Most assemblers therefore allow us to use relative addresses by
specifying at the start of the file that the origin of the assembly language module
is to be computed later. Addresses within the module are then computed relative
to the start of the module. The linker is then responsible for translating relative
addresses into addresses.

222 CHAPTER 5 Program Design and Analysis

5.3.1 Assemblers
When translating assembly code into object code, the assembler must translate
opcodes and format the bits in each instruction, and translate labels into addresses.
In this section, we review the translation of assembly language into binary.

Labels make the assembly process more complex, but they are the most impor-
tant abstraction provided by the assembler. Labels let the programmer (a human
programmer or a compiler generating assembly code) avoid worrying about the
locations of instructions and data. Label processing requires making two passes
through the assembly source code as follows:

1. The first pass scans the code to determine the address of each label.

2. The second pass assembles the instructions using the label values computed
in the first pass.

As shown in Figure 5.9, the name of each symbol and its address is stored in a
symbol table that is built during the first pass. The symbol table is built by scan-
ning from the first instruction to the last. (For the moment, we assume that we
know the address of the first instruction in the program; we consider the general
case in Section 5.3.2.) During scanning, the current location in memory is kept
in a program location counter (PLC). Despite the similarity in name to a pro-
gram counter, the PLC is not used to execute the program, only to assign memory
locations to labels. For example, the PLC always makes exactly one pass through
the program,whereas the program counter makes many passes over code in a loop.
Thus,at the start of the first pass,the PLC is set to the program’s starting address and
the assembler looks at the first line. After examining the line, the assembler updates
the PLC to the next location (since ARM instructions are four bytes long, the PLC
would be incremented by four) and looks at the next instruction. If the instruction
begins with a label,a new entry is made in the symbol table,which includes the label
name and its value. The value of the label is equal to the current value of the PLC.
At the end of the first pass, the assembler rewinds to the beginning of the assembly
language file to make the second pass. During the second pass, when a label name
is found, the label is looked up in the symbol table and its value substituted into the
appropriate place in the instruction.

But how do we know the starting value of the PLC?The simplest case is absolute
addressing. In this case,one of the first statements in the assembly language program

PLC xx

yy

add r0,r1,r2
add r3,r4,r5
cmp r0,r3
sub r5,r6,r7

Assembly code Symbol table

xx 0x8
yy 0x10

FIGURE 5.9

Symbol table processing during assembly.

5.3 Assembly, Linking, and Loading 223

is a pseudo-op that specifies the origin of the program, that is, the location of the
first address in the program. A common name for this pseudo-op (e.g., the one used
for the ARM) is the ORG statement

ORG 2000

which puts the start of the program at location 2000.This pseudo-op accomplishes
this by setting the PLC’s value to its argument’s value,2000 in this case. Assemblers
generally allow a program to have many ORG statements in case instructions or data
must be spread around various spots in memory. Example 5.1 illustrates the use of
the PLC in generating the symbol table.

Example 5.1

Generating a symbol table
Let’s use the following simple example of ARM assembly code:

ORG 100
label1 ADR r4,c

LDR r0,[r4]
label2 ADR r4,d

LDR r1,[r4]
label3 SUB r0,r0,r1

The initial ORG statement tells us the starting address of the program. To begin, let’s initialize
the symbol table to an empty state and put the PLC at the initial ORG statement.

ORG 100
label1 ADR r4,c

LDR r0,[r4]
label2 ADR r4,d

LDR r1,[r4]
label3 SUB r0,r0,r1

PLC 5 ??

Code Symbol table

The PLC value shown is at the beginning of this step, before we have processed the ORG
statement. The ORG tells us to set the PLC value to 100.

ORG 100
label1 ADR r4,c

LDR r0,[r4]
label2 ADR r4,d

LDR r1,[r4]
label3 SUB r0,r0,r1

PLC 5 100

Code Symbol table

224 CHAPTER 5 Program Design and Analysis

To process the next statement, we move the PLC to point to the next statement. But because
the last statement was a pseudo-op that generates no memory values, the PLC value remains
at 100.

ORG 100
label1 ADR r4,c

LDR r0,[r4]
label2 ADR r4,d

LDR r1,[r4]
label3 SUB r0,r0,r1

PLC 5 100

Code Symbol table

Because there is a label in this statement, we add it to the symbol table, taking its value from
the current PLC value.

ORG 100
label1 ADR r4,c

LDR r0,[r4]
label2 ADR r4,d

LDR r1,[r4]
label3 SUB r0,r0,r1

PLC 5 100

Code Symbol table

label1 100

To process the next statement, we advance the PLC to point to the next line of the program
and increment its value by the length in memory of the last line, namely, 4.

ORG 100
label1 ADR r4,c

LDR r0,[r4]
label2 ADR r4,d

LDR r1,[r4]
label3 SUB r0,r0,r1

PLC 5 104

Code Symbol table

label1 100

We continue this process as we scan the program until we reach the end, at which the state
of the PLC and symbol table are as shown below.

ORG 100
label1 ADR r4,c

LDR r0,[r4]
label2 ADR r4,d

LDR r1,[r4]
label3 SUB r0,r0,r1PLC 5 116

Code Symbol table

label1 100
label2 108
label3 116

5.3 Assembly, Linking, and Loading 225

Assemblers allow labels to be added to the symbol table without occupying
space in the program memory. A typical name of this pseudo-op is EQU for equate.
For example, in the code

ADD r0,r1,r2
FOO EQU 5
BAZ SUB r3,r4,#FOO

the EQU pseudo-op adds a label named FOO with the value 5 to the symbol table.
The value of the BAZ label is the same as if the EQU pseudo-op were not present,
since EQU does not advance the PLC. The new label is used in the subsequent SUB
instruction as the name for a constant. EQUs can be used to define symbolic values
to help make the assembly code more structured.

TheARM assembler supports one pseudo-op that is particular to theARM instruc-
tion set. In other architectures, an address would be loaded into a register (e.g., for
an indirect access) by reading it from a memory location. ARM does not have an
instruction that can load an effective address, so the assembler supplies the ADR
pseudo-op to create the address in the register. It does so by using ADD or SUB
instructions to generate the address. The address to be loaded can be register rela-
tive,program relative,or numeric,but it must assemble to a single instruction. More
complicated address calculations must be explicitly programmed.

The assembler produces an object file that describes the instructions and data
in binary format. A commonly used object file format,originally developed for Unix
but now used in other environments as well, is known as COFF (common object
file format). The object file must describe the instructions, data, and any addressing
information and also usually carries along the symbol table for later use in debugging.

Generating relative code rather than absolute code introduces some new chal-
lenges to the assembly language process. Rather than using an ORG statement to
provide the starting address, the assembly code uses a pseudo-op to indicate that
the code is in fact relocatable. (Relative code is the default for the ARM assembler.)
Similarly,we must mark the output object file as being relative code.We can initialize
the PLC to 0 to denote that addresses are relative to the start of the file. However,
whenwegeneratecode thatmakesuseof those labels,wemustbecareful,sincewedo
not yet know the actual value that must be put into the bits.We must instead generate
relocatable code.We use extra bits in the object file format to mark the relevant fields
as relocatable and then insert the label’s relative value into the field.The linker must
therefore modify the generated code—when it finds a field marked as relative,it uses
the addresses that it has generated to replace the relative value with a correct,value
for the address.To understand the details of turning relocatable code into executable
code,we must understand the linking process described in the next section.

5.3.2 Linking
Many assembly language programs are written as several smaller pieces rather than
as a single large file. Breaking a large program into smaller files helps delineate

226 CHAPTER 5 Program Design and Analysis

program modularity. If the program uses library routines, those will already be
preassembled,and assembly language source code for the libraries may not be avail-
able for purchase. A linker allows a program to be stitched together out of several
smaller pieces.The linker operates on the object files created by the assembler and
modifies the assembled code to make the necessary links between files.

Some labels will be both defined and used in the same file. Other labels will
be defined in a single file but used elsewhere as illustrated in Figure 5.10. The
place in the file where a label is defined is known as an entry point . The place
in the file where the label is used is called an external reference. The main job
of the loader is to resolve external references based on available entry points. As a
result of the need to know how definitions and references connect, the assembler
passes to the linker not only the object file but also the symbol table. Even if the
entire symbol table is not kept for later debugging purposes, it must at least pass the
entry points. External references are identified in the object code by their relative
symbol identifiers.

The linker proceeds in two phases. First, it determines the address of the start
of each object file. The order in which object files are to be loaded is given by
the user, either by specifying parameters when the loader is run or by creating
a load map file that gives the order in which files are to be placed in memory.
Given the order in which files are to be placed in memory and the length of each
object file, it is easy to compute the starting address of each file. At the start of the

label1 LDR r0,[r1]
...

...

...

ADR a

B label2

% 1var1

label2 ADR var1
...

...

B label3

a % 10
y % 1
x % 1

External
references

Entry
points

a

label2

label1

var1

External
references

Entry
points

var1

label3

label2

x

y

a

File 2File 1

FIGURE 5.10

External references and entry points.

5.4 Basic Compilation Techniques 227

second phase, the loader merges all symbol tables from the object files into a single,
large table. It then edits the object files to change relative addresses into addresses.
This is typically performed by having the assembler write extra bits into the object
file to identify the instructions and fields that refer to labels. If a label cannot be
found in the merged symbol table, it is undefined and an error message is sent to
the user.

Controlling where code modules are loaded into memory is important in
embedded systems. Some data structures and instructions, such as those used to
manage interrupts, must be put at precise memory locations for them to work.
In other cases, different types of memory may be installed at different address
ranges. For example, if we have EPROM in some locations and DRAM in oth-
ers, we want to make sure that locations to be written are put in the DRAM
locations.

Workstations and PCs provide dynamically linked libraries,and some embed-
ded computing environments may provide them as well. Rather than link a separate
copy of commonly used routines such as I/O to every executable program on the
system, dynamically linked libraries allow them to be linked in at the start of pro-
gram execution. A brief linking process is run just before execution of the program
begins; the dynamic linker uses code libraries to link in the required routines. This
not only saves storage space but also allows programs that use those libraries to
be easily updated. However, it does introduce a delay before the program starts
executing.

5.4 BASIC COMPILATION TECHNIQUES
It is useful to understand how a high-level language program is translated into
instructions. Since implementing an embedded computing system often requires
controlling the instruction sequences used to handle interrupts, placement of data
and instructions in memory, and so forth, understanding how the compiler works
can help you know when you cannot rely on the compiler. Next, because many
applications are also performance sensitive, understanding how code is generated
can help you meet your performance goals, either by writing high-level code that
gets compiled into the instructions you want or by recognizing when you must write
your own assembly code. Compilation combines translation and optimization. The
high-level language program is translated into the lower-level form of instructions;
optimizations try to generate better instruction sequences than would be possible if
the brute force technique of independently translating source code statements were
used. Optimization techniques focus on more of the program to ensure that com-
pilation decisions that appear to be good for one statement are not unnecessarily
problematic for other parts of the program.

The compilation process is summarized in Figure 5.11. Compilation begins
with high-level language code such as C and generally produces assembly code.
(Directly producing object code simply duplicates the functions of an assembler,

228 CHAPTER 5 Program Design and Analysis

High-level
language code

Parsing, symbol table generation, semantic analysis

Machine-independent optimizations

Instruction-level optimizations
and code generation

Assembly code

FIGURE 5.11

The compilation process.

which is a very desirable stand-alone program to have.) The high-level language
program is parsed to break it into statements and expressions. In addition, a
symbol table is generated, which includes all the named objects in the pro-
gram. Some compilers may then perform higher-level optimizations that can be
viewed as modifying the high-level language program input without reference to
instructions.

Simplifying arithmetic expressions is one example of a machine-independent
optimization. Not all compilers do such optimizations, and compilers can vary
widely regarding which combinations of machine-independent optimizations they
do perform. Instruction-level optimizations are aimed at generating code. They
may work directly on real instructions or on a pseudo-instruction format that is
later mapped onto the instructions of the target CPU. This level of optimization
also helps modularize the compiler by allowing code generation to create simpler
code that is later optimized. For example, consider the following array access
code:

x[i] = c*x[i];

A simple code generator would generate the address for x[i] twice, once for
each appearance in the statement.The later optimization phases can recognize this
as an example of common expressions that need not be duplicated. While in this
simple case it would be possible to create a code generator that never generated
the redundant expression, taking into account every such optimization at code
generation time is very difficult. We get better code and more reliable compilers by
generating simple code first and then optimizing it.

5.4 Basic Compilation Techniques 229

5.4.1 Statement Translation
In this section, we consider the basic job of translating the high-level language
program with little or no optimization. Let’s first consider how to translate an expres-
sion. A large amount of the code in a typical application consists of arithmetic and
logical expressions. Understanding how to compile a single expression,as described
in Example 5.2, is a good first step in understanding the entire compilation process.

Example 5.2

Compiling an arithmetic expression
In the following arithmetic expression,

a*b + 5*(c – d)

the variable is written in terms of program variables. In some machines we may be able
to perform memory-to-memory arithmetic directly on the locations corresponding to those
variables. However, in many machines, such as the ARM, we must first load the variables into
registers. This requires choosing which registers receive not only the named variables but also
intermediate results such as (c � d).

The code for the expression can be built by walking the data flow graph. The data flow
graph for the expression appears on page 230.

The temporary variables for the intermediate values and final result have been named
w , x , y , and z . To generate code, we walk from the tree’s root (where z , the final result, is
generated) by traversing the nodes in post order. During the walk, we generate instructions to
cover the operation at every node. The path is presented below.

a b

w

x

c d

y

z

5

*

*

2

1

230 CHAPTER 5 Program Design and Analysis

a b

w x

c d

y

z

5

1 2

3

4

*

*

2

1

The nodes are numbered in the order in which code is generated. Since every node in the
data flow graph corresponds to an operation that is directly supported by the instruction set,
we simply generate an instruction at every node. Since we are making an arbitrary register
assignment, we can use up the registers in order starting with r1. The resulting ARM code
follows:

; operator 1 (+)
ADR r4,a ; get address for a
MOV r1,[r4] ; load a
ADR r4,b ; get address for b
MOV r2,[r4] ; load b
ADD r3,r1,r2 ; put w into r3
; operator 2 (–)
ADR r4,c ; get address for c
MOV r4,[r4] ; load c
ADR r4,d ; get address for d
MOV r5,[r4] ; load d
SUB r6,r4,r5 ; put x into r6
; operator 3 (*)
MUL r7,r6,#5 ; operator 3, puts y into r7
; operator 4 (+)
ADD r8,r7,r3 ; operator 4, puts z into r8

One obvious optimization is to reuse a register whose value is no longer needed. In the case
of the intermediate values w , x , and y , we know that they cannot be used after the end
of the expression (e.g., in another expression) since they have no name in the C program.
However, the final result z may in fact be used in a C assignment and the value reused later
in the program. In this case we would need to know when the register is no longer needed to
determine its best use.

5.4 Basic Compilation Techniques 231

if (a > b) {
 x � 5;
 y � c � d;
 }

else
 x � c � d;

a > b

x � 5;
y � c � d;

x � c � d;

T F

FIGURE 5.12

Flow of control in C and control flow diagrams.

In the previous example,we made an arbitrary allocation of variables to registers
for simplicity. When we have large programs with multiple expressions, we must
allocate registers more carefully since CPUs have a limited number of registers. We
will consider register allocation in Section 5.5.5.

We also need to be able to translate control structures. Since conditionals are
controlled by expressions, the code generation techniques of the last example can
be used for those expressions, leaving us with the task of generating code for the
flow of control itself. Figure 5.12 shows a simple example of changing flow of
control in C—an if statement, in which the condition controls whether the true or
false branch of the if is taken. Figure 5.12 also shows the control flow diagram for
the if statement.

Example 5.3 illustrates how to implement conditionals in assembly language.

Example 5.3

Generating code for a conditional
Consider the following C statement:

if (a + b > 0)
x = 5;

else
x = 7;

The CDFG for this statement is:

x 5 7

x 5 5

a 1 b > 0
F

T

232 CHAPTER 5 Program Design and Analysis

We know how to generate the code for the expressions. We can generate the control flow
code by walking the CDFG. One ordered walk through the CDFG is:

x 5 7

x 5 5

a 1 b > 0
F

1

2

3

4

T

To generate code, we must assign a label to the first instruction at the end of a directed
edge and create a branch for each edge that does not go to the following instruction. The
exact steps to be taken at the branch points depend on the target architecture. On some
machines, evaluating expressions generates condition codes that we can test in subsequent
branches, and on other machines we must use test-and-branch instructions. ARM allows us
to test condition codes, so we get the following ARM code for the 1-2-3 walk:

ADR r5,a ; get address for a
LDR r1,[r5] ; load a
ADR r5,b ; get address for b
LDR r2,b ; load b
ADD r3,r1,r2
BLE label3 ; true condition falls through branch ;

; true case
LDR r3,#5 ; load constant
ADR r5,x
STR r3, [r5] ; store value into x
B stmtend ; done with the true case

; false case
label3 LDR r3,#7 ; load constant

ADR r5,x ; get address of x
STR r3,[r5] ; store value into x

stmtend ...

The 1-2 and 3-4 edges do not require a branch and label because they are straight-line
code. In contrast, the 1-3 and 2-4 edges do require a branch and a label for the target.

Since expressions are generally created as straight-line code, they typically require careful
consideration of the order in which the operations are executed. We have much more freedom
when generating conditional code because the branches ensure that the flow of control goes
to the right block of code. If we walk the CDFG in a different order and lay out the code blocks
in a different order in memory, we still get valid code as long as we properly place branches.

5.4 Basic Compilation Techniques 233

Drawing a control flow graph based on the while form of the loop helps us
understand how to translate it into instructions.

i 5 0;
f 5 0;

i < N
N

Y

Loop
exit

Loop initiation code

Loop test

Loop body

Loop variable update

f 5 f 1 c[i]*x[i];

i 5 i 1 1;

C compilers can generate (using the -s flag) assembler source,which some com-
pilers intersperse with the C code. Such code is a very good way to learn about
both assembly language programming and compilation.

5.4.2 Procedures
Another major code generation problem is the creation of procedures. Generating
code for procedures is relatively straightforward once we know the procedure link-
age appropriate for the CPU. At the procedure definition, we generate the code to
handle the procedure call and return. At each call of the procedure, we set up the
procedure parameters and make the call.

The CPU’s subroutine call mechanism is usually not sufficient to directly support
procedures in modern programming languages.We introduced the procedure stack
and procedure linkages in Section 2.2.3. The linkage mechanism provides a way
for the program to pass parameters into the program and for the procedure to
return a value. It also provides help in restoring the values of registers that the
procedure has modified. All procedures in a given programming language use the
same linkage mechanism (although different languages may use different linkages).
The mechanism can also be used to call handwritten assembly language routines
from compiled code.

Procedure stacks are typically built to grow down from high addresses. A stack
pointer (sp) defines the end of the current frame, while a frame pointer (fp)
defines the end of the last frame. (The fp is technically necessary only if the stack
frame can be grown by the procedure during execution.) The procedure can refer

234 CHAPTER 5 Program Design and Analysis

to an element in the frame by addressing relative to sp. When a new procedure is
called, the sp and fp are modified to push another frame onto the stack.

The ARM Procedure Call Standard (APCS) is a good illustration of a typi-
cal procedure linkage mechanism. Although the stack frames are in main memory,
understanding how registers are used is key to understanding the mechanism, as
explained below.

■ r0�r3 are used to pass parameters into the procedure. r0 is also used to hold
the return value. If more than four parameters are required, they are put on
the stack frame.

■ r4 � r7 hold register variables.

■ r11 is the frame pointer and r13 is the stack pointer.

■ r10 holds the limiting address on stack size, which is used to check for stack
overflows.

Other registers have additional uses in the protocol.

5.4.3 Data Structures
The compiler must also translate references to data structures into references
to raw memories. In general, this requires address computations. Some of these
computations can be done at compile time while others must be done at run
time.

Arrays are interesting because the address of an array element must in general
be computed at run time, since the array index may change. Let us first consider
one-dimensional arrays:

a[i]

The layout of the array in memory is shown in Figure 5.13. The zeroth element
is stored as the first element of the array, the first element directly below,and so on.

. . .

a[0]

a[1]

a

FIGURE 5.13

Layout of a one-dimensional array in memory.

5.4 Basic Compilation Techniques 235

. . .

. . .

a[1,0]

a[1,1]

a[0,0]

a[0,1]

FIGURE 5.14

Memory layout for two-dimensional arrays.

We can create a pointer for the array that points to the array’s head, namely, a[0]. If
we call that pointer aptr for convenience,then we can rewrite the reading of a[i] as

*(aptr + i)

Two-dimensional arrays are more challenging. There are multiple possible ways
to lay out a two-dimensional array in memory,as shown in Figure 5.14. In this form,
which is known as row major , the inner variable of the array (j in a[i, j]) varies
most quickly. (Fortran uses a different organization known as column major.) Two-
dimensional arrays also require more sophisticated addressing—in particular, we
must know the size of the array. Let us consider the row-major form. If the a[]
array is of size N � M , then we can turn the two-dimensional array access into a
one-dimensional array access. Thus,

a[i,j]
becomes
a[i*M + j]

where the maximum value for j is M � 1.
A C struct is easier to address.As shown in Figure 5.15, a structure is implemented

as a contiguous block of memory. Fields in the structure can be accessed using
constant offsets to the base address of the structure. In this example, if field1 is
four bytes long, then field2 can be accessed as

*(aptr + 4)

This addition can usually be done at compile time,requiring only the indirection
itself to fetch the memory location during execution.

236 CHAPTER 5 Program Design and Analysis

aptr

4
b

yt
es

field1

field2

struct {
 int field1;
 char field2;
} mystruct;

struct mystruct a, *aptr 5 &a;

FIGURE 5.15

C structure layout and access.

5.5 PROGRAM OPTIMIZATION
Now that we understand something about how programs are created,we can start to
understand how to optimize programs. If we want to write programs in a high-level
language, then we need to understand how to optimize them without rewriting
them in assembly language. This first requires creating the proper source code that
causes the compiler to do what we want. Hopefully, the compiler can optimize our
program by recognizing features of the code and taking the proper action.

5.5.1 Expression Simplification
Expression simplification is a useful area for machine-independent transforma-
tions.We can use the laws of algebra to simplify expressions. Consider the following
expression:

a*b + a*c

We can use the distributive law to rewrite the expression as

a*(b + c)

Since the new expression has only two operations rather than three for the
original form, it is almost certainly cheaper, because it is both faster and smaller.
Such transformations make some broad assumptions about the relative cost of oper-
ations. In some cases, simple generalizations about the cost of operations may be
misleading. For example, a CPU with a multiply-and-accumulate instruction may be

5.5 Program Optimization 237

able to do a multiply and addition as cheaply as it can do an addition. However,such
situations can often be taken care of in code generation.

We can also use the laws of arithmetic to further simplify expressions on
constants. Consider the following C statement:

for (i = 0; i < 8 + 1; i++)

We can simplify 8 � 1 to 9 at compile time—there is no need to perform that
arithmetic while the program is executing. Why would a program ever contain
expressions that evaluate to constants? Using named constants rather than numbers
is good programming practice and often leads to constant expression. The original
form of the for statement could have been

for (i = 0; i < NOPS + 1; i++)

where, for example, the added 1 takes care of a trailing null character.

5.5.2 Dead Code Elimination
Code that will never be executed can be safely removed from the program. The
general problem of identifying code that will never be executed is difficult, but
there are some important special cases where it can be done.

Programmers will intentionally introduce dead code in certain situations.
Consider this C code fragment:

#define DEBUG 0
...
if (DEBUG) print_debug_stuff();

In the above case, the print_debug_stuff() function is never executed, but the
code allows the programmer to override the preprocessor variable definition (per-
haps with a compile-time flag) to enable the debugging code. This case is easy to
analyze because the condition is the constant 0,which C uses for the false condition.
Since there is no else clause in the if statement,the compiler can totally eliminate the
if statement, rewriting the CDFG to provide a direct edge between the statements
before and after the if.

Some dead code may be introduced by the compiler. For example, certain opti-
mizations introduce copy statements that copy one variable to another. If uses of
the first variable can be replaced by references to the second one, then the copy
statement becomes dead code that can be eliminated.

5.5.3 Procedure Inlining
Another machine-independent transformation that requires a little more evalua-
tion is procedure inlining. An inlined procedure does not have a separate proce-
dure body and procedure linkage; rather, the body of the procedure is substituted
inplace for theprocedurecall. Figure5.16showsanexampleof function inlining inC.

238 CHAPTER 5 Program Design and Analysis

int foo(a,b,c) { return a 1 b 2 c ; }

Function definition

Function call

Inlining result

z 5 foo(w,x,y);

z 5 w 1 x 2 y;

FIGURE 5.16

Function inlining in C.

The C++ programming language provides an inline construct that tells the compiler
to generate inline code for a function. In this case,an inlined procedure is generated
in expanded form whenever possible. However, inlining is not always the best thing
to do. Although it does eliminate the procedure linkage instructions, when a cache
is present,having multiple copies of the function body may actually slow down the
fetches of these instructions. Inlining also increases code size, and memory may be
precious.

5.5.4 Loop Transformations
Loops are important program structures—although they are compactly described
in the source code, they often use a large fraction of the computation time. Many
techniques have been designed to optimize loops.

A simple but useful transformation is known as loop unrolling, which is
illustrated in Example 5.4. Loop unrolling is important because it helps expose
parallelism that can be used by later stages of the compiler.

Example 5.4

Loop unrolling
A simple loop in C follows:

for (i = 0; i < N; i++) {
a[i] = b[i]*c[i];

}

This loop is executed a fixed number of times, namely, N . A straightforward implementation
of the loop would create and initialize the loop variable i , update its value on every iteration,
and test it to see whether to exit the loop. However, since the loop is executed a fixed number
of times, we can generate more direct code.

If we let N � 4, then we can substitute the above C code for the following loop:

a[0] = b[0]*c[0];
a[1] = b[1]*c[1];

5.5 Program Optimization 239

a[2] = b[2]*c[2];
a[3] = b[3]*c[3];

This unrolled code has no loop overhead code at all, that is, no iteration variable and no tests.
But the unrolled loop has the same problems as the inlined procedure—it may interfere with
the cache and expands the amount of code required.

We do not, of course, have to fully unroll loops. Rather than unroll the above loop four
times, we could unroll it twice. The following code results:

for (i = 0; i < 2; i++) {
a[i*2] = b[i*2]*c[i*2];
a[i*2 + 1] = b[i*2 + 1]*c[i*2 + 1];
}

In this case, since all operations in the two lines of the loop body are independent, later stages
of the compiler may be able to generate code that allows them to be executed efficiently on
the CPU’s pipeline.

Loop fusion combines two or more loops into a single loop. For this transfor-
mation to be legal, two conditions must be satisfied. First, the loops must iterate
over the same values. Second, the loop bodies must not have dependencies that
would be violated if they are executed together—for example, if the second loop’s
ith iteration depends on the results of the I � 1th iteration of the first loop, the two
loops cannot be combined. Loop distribution is the opposite of loop fusion, that
is, decomposing a single loop into multiple loops.

Loop tiling breaks up a loop into a set of nested loops,with each inner loop per-
forming the operations on a subset of the data.An example is shown in Figure 5.17.
Here, each loop is broken up into tiles of size two. Each loop is split into two
loops—for example, the inner ii loop iterates within the tile and the outer i loop
iterates across the tiles. The result is that the pattern of accesses across the a array
is drastically different—rather than walking across one row in its entirety, the code
walks through rows and columns following the tile structure. Loop tiling changes
the order in which array elements are accessed,thereby allowing us to better control
the behavior of the cache during loop execution.

We can also modify the arrays being indexed in loops. Array padding
adds dummy data elements to a loop in order to change the layout of the
array in the cache. Although these array locations will not be used, they do
change how the useful array elements fall into cache lines. Judicious padding
can in some cases significantly reduce the number of cache conflicts during loop
execution.

5.5.5 Register Allocation
Register allocation is a very important compilation phase. Given a block of code,
we want to choose assignments of variables (both declared and temporary) to

240 CHAPTER 5 Program Design and Analysis

Code

Before After

Access
pattern
in
a array

for (i 5 0 ; i < N; i11)
 for (j 5 0 ; j < N; j11)
 c[i] 5 a [i,j] * b[i];

for (i 5 0 ; i < N; i 15 2)
 for (j 5 0 ; j < N; j 15 2)
 for (ii 5 i; ii < min(i 1 2 ,N); i11)
 for (jj 5 j; jj < min(j 1 2 ,N); j11)
 c[ii] 5 a [ii,jj] * b[ii];

[0,0]

[1,0]

[2,0]

[3,0]

[0,N – 1]

[1,N – 1]

[2,N – 1]

[3,N – 1]

. . .

[0,2]

[1,2]

[2,2]

[3,2]

[0,0]

[1,0]

[2,0]

[3,0]

[0,1]

[1,1]

[2,1]

[3,1]

[0,2]

[1,2]

[2,2]

[3,2]

[0,N – 1]

[1,N – 1]

[2,N – 1]

[3,N – 1]

. . .

...

FIGURE 5.17

Loop tiling.

registers to minimize the total number of required registers. Example 5.5 illustrates
the importance of proper register allocation.

Example 5.5

Register allocation
To keep the example small, we assume that we can use only four of the ARM’s registers.
In fact, such a restriction is not unthinkable—programming conventions can reserve certain
registers for special purposes and significantly reduce the number of general-purpose registers
available.

Consider the following C code:

w = a + b; /* statement 1 */
x = c + w; /* statement 2 */
y = c + d; /* statement 3 */

A naive register allocation, assigning each variable to a separate register, would require seven
registers for the seven variables in the above code. However, we can do much better by reusing
a register once the value stored in the register is no longer needed. To understand how to do
this, we can draw a lifetime graph that shows the statements on which each statement is used.
Appearing below is a lifetime graph in which the x -axis is the statement number in the C code
and the y -axis shows the variables.

5.5 Program Optimization 241

y

1 2 3

x

w

d

c

b

a

A horizontal line stretches from the first statement where the variable is used to the last
use of the variable; a variable is said to be live during this interval. At each statement, we can
determine every variable currently in use. The maximum number of variables in use at any
statement determines the maximum number of registers required. In this case, statement two
requires three registers: c, w , and x . This fits within the four registers limitation. By reusing
registers once their current values are no longer needed, we can write code that requires no
more than four registers. Appearing below is one register assignment.

A r0
B r1
C r2
D r0
W r3
X r0
Y r3

The ARM assembly code that uses the above register assignment follows:

LDR r0,[p_a] ; load a into r0 using pointer to a (p_a)
LDR r1,[p_b] ; load b into r1
ADD r3,r0,r1 ; compute a + b
STR r3,[p_w] ; w = a + b
LDR r2,[p_c] ; load c into r2
ADD r0,r2,r3 ; compute c + w, reusing r0 for x
STR r0,[p_x] ; x = c + w
LDR r0,[p_d] ; load d into r0
ADD r3,r2,r0 ; compute c + d, reusing r3 for y
STR r3,[p_y] ; y = c + d

242 CHAPTER 5 Program Design and Analysis

Blue Green

Red Red Green x

a b

w

c

Blue Green

d

y

FIGURE 5.18

Using graph coloring to solve the problem of Example 5.5.

If a section of code requires more registers than are available, we must spill
some of the values out to memory temporarily. After computing some values, we
write the values to temporary memory locations, reuse those registers in other
computations, and then reread the old values from the temporary locations to
resume work. Spilling registers is problematic in several respects. For example,
it requires extra CPU time and uses up both instruction and data memory.
Putting effort into register allocation to avoid unnecessary register spills is worth
your time.

We can solve register allocation problems by building a conflict graph and
solving a graph coloring problem. As shown in Figure 5.18, each variable in the
high-level language code is represented by a node. An edge is added between two
nodes if they are both live at the same time. The graph coloring problem is to use
the smallest number of distinct colors to color all the nodes such that no two nodes
are directly connected by an edge of the same color. The figure shows a satisfying
coloring that uses three colors. Graph coloring is NP-complete, but there are effi-
cient heuristic algorithms that can give good results on typical register allocation
problems.

Lifetime analysis assumes that we have already determined the order in which
we will evaluate operations. In many cases,we have freedom in the order in which
we do things. Consider the following expression:

(a + b) * (c - d)

We have to do the multiplication last, but we can do either the addition or the
subtraction first. Different orders of loads,stores,and arithmetic operations may also
result in different execution times on pipelined machines. If we can keep values in
registers without having to reread them from main memory,we can save execution
time and reduce code size as well. Example 5.6 illustrates how proper operator
scheduling can improve register allocation.

5.5 Program Optimization 243

Example 5.6

Operator scheduling for register allocation
Here is sample C code fragment:

w = a + b; /* statement 1 */
x = c + d; /* statement 2 */
y = x + e; /* statement 3 */
z = a – b; /* statement 4 */

If we compile the statements in the order in which they were written, we get the
register

1 2 3 4

y

z

x

w

d

e

c

b

a

Since w is needed until the last statement, we need five registers at statement 3, even
though only three registers are needed for the statement at line 3. If we swap statements 3
and 4 (renumbering them 39 and 49), we reduce our requirements to three registers. The
modified C code follows:

w = a + b; /* statement 1 */
z = a – b; /* statement 29 */
x = c + d; /* statement 39 */
y = x + e; /* statement 49 */

The lifetime graph for the new code appears below.

244 CHAPTER 5 Program Design and Analysis

1 2 3 4

y

z

x

w

d

e

c

b

a

Compare the ARM assembly code for the two code fragments. We have written both
assuming that we have only four free registers. In the before version, we do not have to write
out any values, but we must read a and b twice. The after version allows us to retain all values
in registers as long as we need them.

Before version After version

LDR r0,a LDR r0,a
LDR r1,b LDR r1,b
ADD r2,r0,r1 ADD r2,r1,r0
STR r2,w ; w = a + b STR r2,w ; w = a + b
LDRr r0,c SUB r2,r0,r1
LDR r1,d STR r2,z ; z = a – b
ADD r2,r0,r1 LDR r0,c
STR r2,x ; x = c + d LDR r1,d
LDR r1,e ADD r2,r1,r0
ADD r0,r1,r2 STR r2,x ; x = c + d
STR r0,y ; y = x + e LDR r1,e
LDR r0,a ; reload a ADD r0,r1,r2
LDR r1,b ; reload b STR r0,y ; y = x + e
SUB r2,r1,r0
STR r2,z ; z = a – b

5.5.6 Scheduling
We have some freedom to choose the order in which operations will be performed.
We can use this to our advantage—for example, we may be able to improve the

5.5 Program Optimization 245

register allocation by changing the order in which operations are performed,thereby
changing the lifetimes of the variables.

We can solve scheduling problems by keeping track of resource utilization over
time. We do not have to know the exact microarchitecture of the CPU—all we
have to know is that, for example, instruction types 1 and 2 both use resource
A while instruction types 3 and 4 use resource B. CPU manufacturers generally
disclose enough information about the microarchitecture to allow us to schedule
instructions even when they do not provide a detailed description of the CPU’s
internals.

We can keep track of CPU resources during instruction scheduling using a reser-
vation table [Kog81]. As illustrated in Figure 5.19, rows in the table represent
instruction execution time slots and columns represent resources that must be
scheduled. Before scheduling an instruction to be executed at a particular time,
we check the reservation table to determine whether all resources needed by the
instruction are available at that time. Upon scheduling the instruction, we update
the table to note all resources used by that instruction. Various algorithms can be
used for the scheduling itself, depending on the types of resources and instruc-
tions involved,but the reservation table provides a good summary of the state of an
instruction scheduling problem in progress.

We can also schedule instructions to maximize performance. As we know from
Section 3.5, when an instruction that takes more cycles than normal to finish
is in the pipeline, pipeline bubbles appear that reduce performance. Software
pipelining is a technique for reordering instructions across several loop itera-
tions to reduce pipeline bubbles. Some instructions take several cycles to complete;
if the value produced by one of these instructions is needed by other instructions
in the loop iteration, then they must wait for that value to be produced. Rather
than pad the loop with no-ops, we can start instructions from the next iteration.
The loop body then contains instructions that manipulate values from several dif-
ferent loop iterations—some of the instructions are working on the early part of
iteration n � 1, others are working on iteration n, and still others are finishing
iteration n � 1.

Time

t

t 1 1

t 1 2

t 1 3

Resource A

X

X

X

Resource B

X

X

FIGURE 5.19

A reservation table for instruction scheduling.

246 CHAPTER 5 Program Design and Analysis

5.5.7 Instruction Selection
Selecting the instructions to use to implement each operation is not trivial. There
may be several different instructions that can be used to accomplish the same goal,
but they may have different execution times. Moreover, using one instruction for
one part of the program may affect the instructions that can be used in adjacent
code.Although we cannot discuss all the problems and methods for code generation
here, a little bit of knowledge helps us envision what the compiler is doing.

One useful technique for generating code is template matching, illustrated in
Figure 5.20. We have a DAG that represents the expression for which we want to
generate code. In order to be able to match up instructions and operations,we rep-
resent instructions using the same DAG representation. We shaded the instruction
template nodes to distinguish them from code nodes. Each node has a cost, which
may be simply the execution time of the instruction or may include factors for size,
power consumption, and so on. In this case, we have shown that each instruction
takes the same amount of time, and thus all have a cost of 1. Our goal is to cover
all nodes in the code DAG with instruction DAGs—until we have covered the code
DAG we have not generated code for all the operations in the expression. In this

*

*

*

1

1

1

Code

Instruction templates

Multiply
cost 5 1

Multiply-add
cost 5 1

Add
cost 5 1

FIGURE 5.20

Code generation by template matching.

5.5 Program Optimization 247

case,the lowest-cost covering uses the multiply-add instruction to cover both nodes.
If we first tried to cover the bottom node with the multiply instruction, we would
find ourselves blocked from using the multiply-add instruction. Dynamic program-
ming can be used to efficiently find the lowest-cost covering of trees,and heuristics
can extend the technique to DAGs.

5.5.8 Understanding and Using Your Compiler
Clearly, the compiler can vastly transform your program during the creation of
assembly language. But compilers are also substantially different in terms of the
optimizations they perform. Understanding your compiler can help you get the
best code out of it.

Studying the assembly language output of the compiler is a good way to learn
about what the compiler does. Some compilers will annotate sections of code to
help you make the correspondence between the source and assembler output. Start-
ing with small examples that exercise only a few types of statements will help. You
can experiment with different optimization levels (the -O flag on most C compil-
ers). You can also try writing the same algorithm in several ways to see how the
compiler’s output changes.

If you cannot get your compiler to generate the code you want, you may need
to write your own assembly language. You can do this by writing it from scratch or
modifying the output of the compiler. If you write your own assembly code, you
must ensure that it conforms to all compiler conventions, such as procedure call
linkage. If you modify the compiler output, you should be sure that you have the
algorithm right before you start writing code so that you don’t have to repeatedly
edit the compiler’s assembly language output. You also need to clearly document
the fact that the high-level language source is, in fact, not the code used in the
system.

5.5.9 Interpreters and JIT Compilers
Programs are not always compiled and then separately executed. In some cases,
it may make sense to translate the program into instructions during execution.
Two well-known techniques for on-the-fly translation are interpretation and
just-in-time (JIT) compilation. The trade-offs for both techniques are simi-
lar. Interpretation or JIT compilation adds overhead—both time and memory—to
execution. However, that overhead may be more than made up for in some circum-
stances. For example, if only parts of the program are executed over some period
of time, interpretation or JIT compilation may save memory, even taking overhead
into account. Interpretation and JIT compilation also provide added security when
programs arrive over the network.

An interpreter translates program statements one at a time.The program may be
expressed in a high-level language,with Forth being a prime example of an embed-
ded language that is interpreted. An interpreter may also interpret instructions in

248 CHAPTER 5 Program Design and Analysis

Code

CPU

Interpreter

OS

FIGURE 5.21

Structure of a program interpretation system.

some abstract machine language. As illustrated in Figure 5.21, the interpreter sits
between the program and the machine. It translates one statement of the program
at a time. The interpreter may or may not generate an explicit piece of code to
represent the statement. Because the interpreter translates only a very small piece
of the program at any given time, a small amount of memory is used to hold inter-
mediate representations of the program. In many cases, a Forth program plus the
Forth interpreter are smaller than the equivalent native machine code.

Just-in-time compilers have been used for many years,but are best known today
for their use in Java environments [Cra97]. A JIT compiler is somewhere between
an interpreter and a stand-alone compiler.A JIT compiler produces executable code
segments for pieces of the program. However, it compiles a section of the program
(such as a function) only when it knows it will be executed. Unlike an interpreter,
it saves the compiled version of the code so that the code does not have to be
retranslated the next time it is executed. A JIT compiler saves some execution time
overhead relative to an interpreter because it does not translate the same piece of
code multiple times,but it also uses more memory for the intermediate representa-
tion.The JIT compiler usually generates machine code directly rather than building
intermediate program representation data structures such as the CDFG. A JIT com-
piler also usually performs only simple optimizations as compared to a stand-alone
compiler.

5.6 PROGRAM-LEVEL PERFORMANCE ANALYSIS
Because embedded systems must perform functions in real time, we often need to
know how fast a program runs.The techniques we use to analyze program execution
time are also helpful in analyzing properties such as power consumption. In this

5.6 Program-Level Performance Analysis 249

cache
p

ip
el

in
e

total execution time

FIGURE 5.22

Execution time is a global property of a program.

section, we study how to analyze programs to estimate their run times. We also
examine how to optimize programs to improve their execution times; of course,
optimization relies on analysis.

It is important to keep in mind that CPU performance is not judged in the same
way as program performance. Certainly, CPU clock rate is a very unreliable metric
for program performance. But more importantly,the fact that the CPU executes part
of our program quickly does not mean that it will execute the entire program at
the rate we desire. As illustrated in Figure 5.22, the CPU pipeline and cache act as
windows into our program. In order to understand the total execution time of our
program, we must look at execution paths, which in general are far longer than the
pipeline and cache windows.The pipeline and cache influence execution time,but
execution time is a global property of the program.

While we might hope that the execution time of programs could be precisely
determined, this is in fact difficult to do in practice:

■ The execution time of a program often varies with the input data values
because those values select different execution paths in the program. For
example, loops may be executed a varying number of times, and different
branches may execute blocks of varying complexity.

■ The cache has a major effect on program performance, and once again, the
cache’s behavior depends in part on the data values input to the program.

■ Execution times may vary even at the instruction level. Floating-point opera-
tions are the most sensitive to data values, but the normal integer execution
pipeline can also introduce data-dependent variations. In general, the execu-
tion time of an instruction in a pipeline depends not only on that instruction
but on the instructions around it in the pipeline.

250 CHAPTER 5 Program Design and Analysis

We can measure program performance in several ways:

■ Some microprocessor manufacturers supply simulators for their CPUs: The
simulator runs on a workstation or PC, takes as input an executable for the
microprocessor along with input data,and simulates the execution of that pro-
gram. Some of these simulators go beyond functional simulation to measure
the execution time of the program. Simulation is clearly slower than executing
the program on the actual microprocessor, but it also provides much greater
visibility during execution. Be careful—some microprocessor performance
simulators are not 100% accurate, and simulation of I/O-intensive code may
be difficult.

■ A timer connected to the microprocessor bus can be used to measure perfor-
mance of executing sections of code. The code to be measured would reset
and start the timer at its start and stop the timer at the end of execution. The
length of the program that can be measured is limited by the accuracy of the
timer.

■ A logic analyzer can be connected to the microprocessor bus to measure the
start and stop times of a code segment.This technique relies on the code being
able to produce identifiable events on the bus to identify the start and stop of
execution. The length of code that can be measured is limited by the size of
the logic analyzer’s buffer.

We are interested in the following three different types of performance measures
on programs:

■ Average-case execution time This is the typical execution time we would
expect for typical data. Clearly, the first challenge is defining typical inputs.

■ Worst-case execution time The longest time that the program can spend
on any input sequence is clearly important for systems that must meet dead-
lines. In some cases, the input set that causes the worst-case execution time
is obvious, but in many cases it is not.

■ Best-case execution time This measure can be important in multirate
real-time systems, as seen in Chapter 6.

First, we look at the fundamentals of program performance in more detail.
We then consider trace-driven performance based on executing the program and
observing its behavior.

5.6.1 Elements of Program Performance
The key to evaluating execution time is breaking the performance problem into
parts. Program execution time [Sha89] can be seen as

execution time � program path � instruction timing

5.6 Program-Level Performance Analysis 251

The path is the sequence of instructions executed by the program (or its equiv-
alent in the high-level language representation of the program). The instruction
timing is determined based on the sequence of instructions traced by the program
path, which takes into account data dependencies, pipeline behavior, and caching.
Luckily, these two problems can be solved relatively independently.

Although we can trace the execution path of a program through its high-level lan-
guage specification, it is hard to get accurate estimates of total execution time from
a high-level language program.This is because there is not,as we saw in Section 5.4,
a direct correspondence between program statements and instructions. The num-
ber of memory locations and variables must be estimated,and results may be either
saved for reuse or recomputed on the fly, among other effects. These problems
become more challenging as the compiler puts more and more effort into optimiz-
ing the program. However,some aspects of program performance can be estimated
by looking directly at the C program. For example, if a program contains a loop
with a large, fixed iteration bound or if one branch of a conditional is much longer
than another, we can get at least a rough idea that these are more time-consuming
segments of the program.

Of course,a precise estimate of performance also relies on the instructions to be
executed,since different instructions take different amounts of time. (In addition,to
make life even more difficult, the execution time of one instruction can depend on
the instructions executed before and after it.) Example 5.7 illustrates data-dependent
program paths.

Example 5.7

Data-dependent paths in if statements
Here is a set of nested if statements:

if (a) { /* test 1 */
if (b) { /* test 2 */

x = r * s + t; /* assignment 1 */
}

else {
y = r + s; /* assignment 2 */
}

z = r + s + u; /* assignment 3 */
}

else {
if (c) { /* test 3 */

y = r – t; /* assignment 4 */
}

}

The conditional tests and assignments are labeled within each if statement to make it easier
to identify paths. What execution paths may be exercised? One way to enumerate all the paths

252 CHAPTER 5 Program Design and Analysis

is to create a truth table–like structure. The paths are controlled by the variables in the if
conditions, namely, a, b, and c. For any given combination of values of those variables, we
can trace through the program to see which branch is taken at each if and which assignments
are performed. For example, when a � 1, b � 0, and c � 1, then test 1 is true and test 2 is
true. This means we first perform assignment 1 and then assignment 3.

Results for all the controlling variable values follow:

a b c Path
0 0 0 test 1 false, test 3 false: no assignments
0 0 1 test 1 false, test 3 true: assignment 4
0 1 0 test 1 false, test 3 false: no assignments
0 1 1 test 1 false, test 3 true: assignment 4
1 0 0 test 1 true, test 2 false: assignments 2, 3
1 0 1 test 1 true, test 2 false: assignments 2, 3
1 1 0 test 1 true, test 2 true: assignments 1, 3
1 1 1 test 1 true, test 2 true: assignments 1, 3

Notice that there are only four distinct cases: no assignment, assignment 4, assignments
2 and 3, or assignments 1 and 3. These correspond to the possible paths through the
nested ifs; the table adds value by telling us which variable values exercise each of these
paths.

Enumerating the paths through a fixed-iteration for loop is seemingly simple. In
the code below,

for (i = 0; i < N; i++)
a[i] = b[i]*c[i];

the assignment in the loop is performed exactly N times. However, we can’t forget
the code executed to set up the loop and to test the iteration variable. Example 5.8
illustrates how to determine the path through a loop.

Example 5.8

Paths in a loop
Here is the loop code for the FIR filter of Example 2.5:

for (i = 0, f = 0; i < N; i++)
f = f + c[i] * x[i];

By examining the CDFG for the code we can more easily determine how many times various
statements are executed. Here is the CDFG once again:

5.6 Program-Level Performance Analysis 253

i 5 0;
f 5 0;

i < N

f 5 f 1 c[i]*x[i];

i 5 i +1;

Y

NLoop
exit

Loop initiation code

Loop test

Loop body

Loop variable update

The CDFG makes it clear that the loop initiation block is executed once, the test is executed
N � 1 times, and the body and loop variable update are each executed N times.

To measure the longest path length, we must find the longest path through the
optimized CDFG since the compiler may change the structure of the control and
data flow to optimize the program’s implementation. It is important to keep in
mind that choosing the longest path through a CDFG as measured by the number
of nodes or edges touched may not correspond to the longest execution time.
Since the execution time of a node in the CDFG will vary greatly depending on the
instructions represented by that node, we must keep in mind that the longest path
through the CDFG depends on the execution times of the nodes. In general, it is
good policy to choose several of what we estimate are the longest paths through
the program and measure the lengths of all of them in sufficient detail to be sure
that we have in fact captured the longest path.

Once we know the execution path of the program, we have to measure the
execution time of the instructions executed along that path. The simplest estimate
is to assume that every instruction takes the same number of clock cycles, which
means we need only count the instructions and multiply by the per-instruction
execution time to obtain the program’s total execution time. However,even ignoring
cache effects, this technique is simplistic for the reasons summarized below.

■ Not all instructions take the same amount of time. Although RISC archi-
tectures tend to provide uniform instruction execution times in order to keep
the CPU’s pipeline full, even many RISC architectures take different amounts
of time to execute certain instructions. Multiple load-store instructions are
examples of longer-executing instructions in the ARM architecture. Floating-
point instructions show especially wide variations in execution time—while

254 CHAPTER 5 Program Design and Analysis

basic multiply and add operations are fast, some transcendental functions can
take thousands of cycles to execute.

■ Execution times of instructions are not independent. The execution time
of one instruction depends on the instructions around it. For example, many
CPUs use register bypassing to speed up instruction sequences when the result
of one instruction is used in the next instruction. As a result, the execution
time of an instruction may depend on whether its destination register is used
as a source for the next operation (or vice versa).

■ The execution time of an instruction may depend on operand values. This
is clearly true of floating-point instructions in which a different number of iter-
ations may be required to calculate the result. Other specialized instructions
can, for example, perform a data-dependent number of integer operations.

We can handle the first two problems more easily than the third. We can look
up instruction execution time in a table; the table will be indexed by opcode and
possibly by other parameter values such as the registers used.To handle interdepen-
dent execution times, we can add columns to the table to consider the effects of
nearby instructions. Since these effects are generally limited by the size of the CPU
pipeline, we know that we need to consider a relatively small window of instruc-
tions to handle such effects. Handling variations due to operand values is difficult to
do without actually executing the program using a variety of data values, given the
large number of factors that can affect value-dependent instruction timing. Luckily,
these effects are often small. Even in floating-point programs, most of the opera-
tions are typically additions and multiplications whose execution times have small
variances.

Thus far we have not considered the effect of the cache. Because the access time
for main memory can be 10–100 times larger than the cache access time,caching can
have huge effects on instruction execution time by changing both the instruction
and data access times. Caching performance inherently depends on the program’s
execution path since the cache’s contents depend on the history of accesses.

5.6.2 Measurement-Driven Performance Analysis
The most direct way to determine the execution time of a program is by measuring
it. This approach is appealing, but it does have some drawbacks. First, in order to
cause the program to execute its worst-case execution path, we have to provide
the proper inputs to it. Determining the set of inputs that will guarantee the worst-
case execution path is infeasible. Furthermore, in order to measure the program’s
performance on a particular type of CPU, we need the CPU or its simulator.

Despite these drawbacks,measurement is the most commonly used way to deter-
mine the execution time of embedded software.Worst-case execution time analysis
algorithms have been used successfully in some areas,such as flight control software,
but many system design projects determine the execution time of their programs
by measurement.

5.6 Program-Level Performance Analysis 255

Most methods of measuring program performance combine the determination
of the execution path and the timing of that path:as the program executes,it chooses
a path and we observe the execution time along that path.We refer to the record of
the execution path of a program as a program trace (or more succinctly,a trace).
Traces can be valuable for other purposes, such as analyzing the cache behavior of
the program.

Perhaps the biggest problem in measuring program performance is figuring out
a useful set of inputs to provide to the program.This problem has two aspects. First,
we have to determine the actual input values. We may be able to use benchmark
data sets or data captured from a running system to help us generate typical values.
For simple programs, we may be able to analyze the algorithm to determine the
inputs that cause the worst-case execution time. The software testing methods of
Section 5.10 can help us generate some test values and determine how thoroughly
we have exercised the program.

The other problem with input data is the software scaffolding that we may
need to feed data into the program and get data out. When we are designing a large
system,it may be difficult to extract out part of the software and test it independently
of the other parts of the system. We may need to add new testing modules to the
system software to help us introduce testing values and to observe testing outputs.

We can measure program performance either directly on the hardware or by
using a simulator. Each method has its advantages and disadvantages.

Physical measurement requires some sort of hardware instrumentation.The most
direct method of measuring the performance of a program would be to watch the
program counter’s value: start a timer when the PC reaches the program’s start,
stop the timer when it reaches the program’s end. Unfortunately, it generally isn’t
possible to directly observe the program counter. However, it is possible in many
cases to modify the program so that it starts a timer at the beginning of execu-
tion and stops the timer at the end. While this doesn’t give us direct information
about the program trace, it does give us execution time. If we have several timers
available, we can use them to measure the execution time of different parts of the
program.

A logic analyzer or an oscilloscope can be used to watch for signals that mark
various points in the execution of the program. However, because logic analyzers
have a limited amount of memory, this approach doesn’t work well for programs
with extremely long execution times.

Some CPUs have hardware facilities for automatically generating trace informa-
tion. For example,the Pentium family microprocessors generate a special bus cycle,a
branch trace message, that shows the source and/or destination address of a branch
[Col97]. If we record only traces, we can reconstruct the instructions executed
within the basic blocks while greatly reducing the amount of memory required to
hold the trace.

The alternative to physical measurement of execution time is simulation. A CPU
simulator is a program that takes as input a memory image for a CPU and performs
the operations on that memory image that the actual CPU would perform, leaving

256 CHAPTER 5 Program Design and Analysis

the results in the modified memory image. For purposes of performance analysis,
the most important type of CPU simulator is the cycle-accurate simulator ,which
performs a sufficiently detailed simulation of the processor’s internals so that it can
determine the exact number of clock cycles required for execution.A cycle-accurate
simulator is built with detailed knowledge of how the processor works, so that it
can take into account all the possible behaviors of the microarchitecture that may
affect execution time. Cycle-accurate simulators are slower than the processor itself,
but a variety of techniques can be used to make them surprisingly fast,running only
hundreds of times slower than the hardware itself.

A cycle-accurate simulator has a complete model of the processor, including the
cache. It can therefore provide valuable information about why the program runs
too slowly.The next example discusses a simulator that can be used to model many
different processors.

Example 5.9

Cycle-accurate simulation
SimpleScalar (http://www.simplescalar.com) is a framework for building cycle-accurate CPU
models. Some aspects of the processor can be configured easily at run time. For more complex
changes, we can use the SimpleScalar toolkit to write our own simulator.

We can use SimpleScalar to simulate the FIR filter code. SimpleScalar can model a number
of different processors; we will use a standard ARM model here.

We want to include the data as part of the program so that the execution time doesn’t
include file I/O. File I/O is slow and the time it takes to read or write data can change sub-
stantially from one execution to another. We get around this problem by setting up an array
that holds the FIR data. And since the test program will include some initialization and other
miscellaneous code, we execute the FIR filter many times in a row using a simple loop. Here
is the complete test program:

#define COUNT 100
#define N 12

int x[N] = {8,17,3,122,5,93,44,2,201,11,74,75};
int c[N] = {1,2,4,7,3,4,2,2,5,8,5,1};

main() {
int i, k, f;

for (k=0; k<COUNT; k++) { /* run the filter */
for (i=0; i<N; i++)

f += c[i]*x[i];
}

}

5.7 Software Performance Optimization 257

To start the simulation process, we compile our test program using a special compiler:

% arm-linux-gcc firtest.c

This gives us an executable program (by default, a.out) that we use to simulate our program:

% arm-outorder a.out

SimpleScalar produces a large output file with a great deal of information about the pro-
gram’s execution. Since this is a simple example, the most useful piece of data is the total
number of simulated clock cycles required to execute the program:

sim_cycle 25854 # total simulation time in cycles

To make sure that we can ignore the effects of program overhead, we will execute the FIR
filter for several different values of N and compare. This run used N � 100; when we also
run N � 1,000 and N � 10,000, we get these results:

Total simulation time in Simulation time for one
N cycles filter execution

100 25854 259
1000 155759 156
10000 1451840 145

Because the FIR filter is so simple and ran in so few cycles, we had to execute it a number
of times to wash out all the other overhead of program execution. However, the time for 1,000
and 10,000 filter executions are within 10% of each other, so those values are reasonably
close to the actual execution time of the FIR filter itself.

5.7 SOFTWARE PERFORMANCE OPTIMIZATION
In this section we will look at several techniques for optimizing software perfor-
mance.

5.7.1 Loop Optimizations
Loops are important targets for optimization because programs with loops tend to
spend a lot of time executing those loops. There are three important techniques in
optimizing loops: code motion, induction variable elimination, and strength
reduction.

Code motion lets us move unnecessary code out of a loop. If a computation’s
result does not depend on operations performed in the loop body,then we can safely
move it out of the loop. Code motion opportunities can arise because programmers
may find some computations clearer and more concise when put in the loop body,

258 CHAPTER 5 Program Design and Analysis

even though they are not strictly dependent on the loop iterations.A simple example
of code motion is also common. Consider the following loop:

for (i = 0; i < N*M; i++) {
z[i] = a[i] + b[i];
}

The code motion opportunity becomes more obvious when we draw the loop’s
CDFG as shown in Figure 5.23.The loop bound computation is performed on every
iteration during the loop test, even though the result never changes. We can avoid
N � M � 1 unnecessary executions of this statement by moving it before the loop,
as shown in the figure.

An induction variable is a variable whose value is derived from the loop iter-
ation variable’s value. The compiler often introduces induction variables to help
it implement the loop. Properly transformed, we may be able to eliminate some
variables and apply strength reduction to others.

A nested loop is a good example of the use of induction variables. Here is a
simple nested loop:

for (i = 0; i < N; i++)
for (j = 0; j < M; j++)

z[i][j] = b[i][j];

i 5 0;

i < N*M?

z[i] 5 a[i] 1 b[i];
i11;

T

F

Before

i 5 0;
temp1=N*M;

i < temp1?

z[i] 5 a[i] 1 b[i];
i11;

T

F

After

FIGURE 5.23

Code motion in a loop.

5.7 Software Performance Optimization 259

The compiler uses induction variables to help it address the arrays. Let us rewrite
the loop in C using induction variables and pointers. (Later, we use a common
induction variable for the two arrays, even though the compiler would probably
introduce separate induction variables and then merge them.)

for (i = 0; i < N; i++)
for (j = 0; j < M; j++) {

zbinduct = i*M + j;
*(zptr + zbinduct) = *(bptr + zbinduct);

}

In the above code, zptr and bptr are pointers to the heads of the z and b arrays
and zbinduct is the shared induction variable. However,we do not need to compute
zbinduct afresh each time. Since we are stepping through the arrays sequentially,
we can simply add the update value to the induction variable:

zbinduct = 0;
for (i = 0; i < N; i++) {

for (j = 0; j < M; j++) {
*(zptr + zbinduct) = *(bptr + zbinduct);
zbinduct++;
}

}

This is a form of strength reduction since we have eliminated the multiplication
from the induction variable computation.

Strength reduction helps us reduce the cost of a loop iteration. Consider the
following assignment:

y = x * 2;

In integer arithmetic, we can use a left shift rather than a multiplication by
2 (as long as we properly keep track of overflows). If the shift is faster than
the multiply, we probably want to perform the substitution. This optimization
can often be used with induction variables because loops are often indexed with
simple expressions. Strength reduction can often be performed with simple sub-
stitution rules since there are relatively few interactions between the possible
substitutions.

Cache Optimizations
A loop nest is a set of loops, one inside the other. Loop nests occur when we
process arrays. A large body of techniques has been developed for optimizing loop
nests. Rewriting a loop nest changes the order in which array elements are accessed.
This can expose new parallelism opportunities that can be exploited by later stages
of the compiler, and it can also improve cache performance. In this section we
concentrate on the analysis of loop nests for cache performance.

260 CHAPTER 5 Program Design and Analysis

Example 5.10

Data realignment and array padding
Assume we want to optimize the cache behavior of the following code:

for (j = 0; j < M; j++)
for (i = 0; i < N; i++)

a[j][i] = b[j][i] * c;

Let us also assume that the a and b arrays are sized with M at 265 and N at 4 and a 256-line,
four-way set-associative cache with four words per line. Even though this code does not reuse
any data elements, cache conflicts can cause serious performance problems because they
interfere with spatial reuse at the cache line level.

Assume that the starting location for a[] is 1024 and the starting location for b[] is 4099.
Although a[0][0] and b[0][0] do not map to the same word in the cache, they do map to the
same block.

Block 0 40991024

Cache

Main memory

a[0][0]

b[0][0]

As a result, we see the following scenario in execution:

■ The access to a[0][0] brings in the first four words of a[].

■ The access to b[0][0] replaces a[0][0] through a[0][3] with b[0][3] and the contents
of the three locations before b[].

■ When a[0][1] is accessed, the same cache line is again replaced with the first four
elements of a[].

5.7 Software Performance Optimization 261

Once the a[0][1] access brings that line into the cache, it remains there for the a[0][2]
and a[0][3] accesses since the b[] accesses are now on the next line. However, the scenario
repeats itself at a[1][0] and every four iterations of the cache.

One way to eliminate the cache conflicts is to move one of the arrays. We do not have to
move it far. If we move b’s start to 4100, we eliminate the cache conflicts.

However, that fix won’t work in more complex situations. Moving one array may only intro-
duce cache conflicts with another array. In such cases, we can use another technique called
padding. If we extend each of the rows of the arrays to have four elements rather than three,
with the padding word placed at the beginning of the row, we eliminate the cache conflicts.
In this case, b[0][0] is located at 4100 by the padding. Although padding wastes memory, it
substantially improves memory performance. In complex situations with multiple arrays and
sophisticated access patterns, we have to use a combination of techniques—relocating arrays
and padding them—to be able to minimize cache conflicts.

5.7.2 Performance Optimization Strategies
Let’s look more generally at how to improve program execution time. First, make
sure that the code really needs to be accelerated. If you are dealing with a large
program,the part of the program using the most time may not be obvious. Profiling
the program will help you find hot spots. A profiler does not measure execution
time—instead, it counts the number of times that procedures or basic blocks in
the program are executed. There are two major ways to profile a program:We can
modify the executable program by adding instructions that increment a location
every time the program passes that point in the program; or we can sample the
program counter during execution and keep track of the distribution of PC values.
Profiling adds relatively little overhead to the program and it gives us some useful
information about where the program spends most of its time.

You may be able to redesign your algorithm to improve efficiency. Examining
asymptotic performance is often a good guide to efficiency. Doing fewer operations
is usually the key to performance. In a few cases,however,brute force may provide
a better implementation. A seemingly simple high-level language statement may in
fact hide a very long sequence of operations that slows down the algorithm. Using
dynamically allocated memory is one example, since managing the heap takes time
but is hidden from the programmer. For example, a sophisticated algorithm that
uses dynamic storage may be slower in practice than an algorithm that performs
more operations on statically allocated memory.

Finally, you can look at the implementation of the program itself. A few hints on
program implementation are summarized below.

■ Try to use registers efficiently. Group accesses to a value together so that
the value can be brought into a register and kept there.

■ Make use of page mode accesses in the memory system whenever possible.
Page mode reads and writes eliminate one step in the memory access. You

262 CHAPTER 5 Program Design and Analysis

can increase use of page mode by rearranging your variables so that more can
be referenced contiguously.

■ Analyze cache behavior to find major cache conflicts. Restructure the code
to eliminate as many of these as you can as follows:

—For instruction conflicts, if the offending code segment is small, try to
rewrite the segment to make it as small as possible so that it better fits
into the cache. Writing in assembly language may be necessary. For con-
flicts across larger spans of code, try moving the instructions or padding
with NOPs.

—For scalar data conflicts,move the data values to different locations to reduce
conflicts.

—For array data conflicts, consider either moving the arrays or changing your
array access patterns to reduce conflicts.

5.8 PROGRAM-LEVEL ENERGY AND POWER ANALYSIS
AND OPTIMIZATION

Power consumption is a particularly important design metric for battery-powered
systems because the battery has a very limited lifetime. However, power consump-
tion is increasingly important in systems that run off the power grid. Fast chips
run hot, and controlling power consumption is an important element of increasing
reliability and reducing system cost.

How much control do we have over power consumption? Ultimately, we must
consume the energy required to perform necessary computations. However, there
are opportunities for saving power. Examples appear below.

■ We may be able to replace the algorithms with others that do things in clever
ways that consume less power.

■ Memory accesses are a major component of power consumption in many
applications. By optimizing memory accesses we may be able to significantly
reduce power.

■ We may be able to turn off parts of the system—such as subsystems of the
CPU, chips in the system, and so on—when we do not need them in order to
save power.

The first step in optimizing a program’s energy consumption is knowing how
much energy the program consumes. It is possible to measure power consumption
for an instruction or a small code fragment [Tiw94]. The technique, illustrated in
Figure 5.24, executes the code under test over and over in a loop. By measuring
the current flowing into the CPU,we are measuring the power consumption of the
complete loop, including both the body and other code. By separately measuring
the power consumption of a loop with no body (making sure, of course, that the

5.8 Program-Level Energy and Power Analysis 263

Ammeter Current

while (TRUE) {
 test_code();
 }

CPU

Power
supply

1

2

FIGURE 5.24

Measuring energy consumption for a piece of code.

compiler hasn’t optimized away the empty loop), we can calculate the power con-
sumption of the loop body code as the difference between the full loop and the
bare loop energy cost of an instruction.

Several factors contribute to the energy consumption of the program.

■ Energy consumption varies somewhat from instruction to instruction.

■ The sequence of instructions has some influence.

■ The opcode and the locations of the operands also matter.

Choosing which instructions to use can make some difference in a program’s
energy consumption,but concentrating on the instruction opcodes has limited pay-
offs in most CPUs. The program has to do a certain amount of computation to
perform its function. While there may be some clever ways to perform that com-
putation, the energy cost of the basic computation will change only a fairly small
amount compared to the total system energy consumption, and usually only after a
great deal of effort. We are further hampered in our ability to optimize instruction-
level energy consumption because most manufacturers do not provide detailed,
instruction-level energy consumption figures for their processors.

In many applications, the biggest payoff in energy reduction for a given amount
of designer effort comes from concentrating on the memory system. Catthoor et al.
[Cat98] showed that memory transfers are by far the most expensive type of opera-
tion performed by a CPU—in their studies, a memory transfer takes 33 times more
energy than does an addition. As a result, the biggest payoffs in energy optimization
come from properly organizing instructions and data in memory. Accesses to reg-
isters are the most energy efficient; cache accesses are more energy efficient than
main memory accesses.

Caches are an important factor in energy consumption. On the one hand,a cache
hit saves a costly main memory access,and on the other, the cache itself is relatively

264 CHAPTER 5 Program Design and Analysis

power hungry because it is built from SRAM, not DRAM. If we can control the
size of the cache, we want to choose the smallest cache that provides us with the
necessary performance. Li and Henkel [Li98] measured the influence of caches on
energy consumption in detail. Figure 5.25 breaks down the energy consumption
of a computer running MPEG (a video encoder) into several components: software
running on the CPU, main memory, data cache, and instruction cache.

As the instruction cache size increases, the energy cost of the software on the
CPU declines, but the instruction cache comes to dominate the energy consump-
tion. Experiments like this on several benchmarks show that many programs have
sweet spots in energy consumption. If the cache is too small, the program runs
slowly and the system consumes a lot of power due to the high cost of main mem-
ory accesses. If the cache is too large, the power consumption is high without a
corresponding payoff in performance. At intermediate values, the execution time
and power consumption are both good.

How can we optimize a program for low power consumption? The best over-
all advice is that high performance = low power. Generally speaking, making the
program run faster also reduces energy consumption.

Clearly, the biggest factor that can be reasonably well controlled by the pro-
grammer is the memory access patterns. If the program can be modified to reduce
instruction or data cache conflicts, for example,the energy required by the memory
system can be significantly reduced.The effectiveness of changes such as reordering
instructions or selecting different instructions depends on the processor involved,
but they are generally less effective than cache optimizations.

A few optimizations mentioned previously for performance are also often useful
for improving energy consumption:

■ Try to use registers efficiently. Group accesses to a value together so that
the value can be brought into a register and kept there.

■ Analyze cache behavior to find major cache conflicts. Restructure the code
to eliminate as many of these as you can:

—For instruction conflicts, if the offending code segment is small, try to
rewrite the segment to make it as small as possible so that it better fits
into the cache. Writing in assembly language may be necessary. For con-
flicts across larger spans of code, try moving the instructions or padding
with NOPs.

—For scalar data conflicts,move the data values to different locations to reduce
conflicts.

—For array data conflicts,consider either moving the arrays or changing your
array access patterns to reduce conflicts.

■ Make use of page mode accesses in the memory system whenever possible.
Page mode reads and writes eliminate one step in the memory access, saving
a considerable amount of power.

5.8 Program-Level Energy and Power Analysis 265

1e+08

1e+07

1e+06

1

0.1

9

9
10

1011

1112
1213

1314 14
15

9
10

11
12

13
14

15

15

9
10

11
12

13
14

15

dcache size [2**val] icache size [2**val]

dcache size [2**val] icache size [2**val]

Execution time

Exec. time [cycles]

“MPEG”

“MPEG”

Energy

Energy [joules]

FIGURE 5.25

Energy and execution time vs. instruction/data cache size for a benchmark program [Li98].

266 CHAPTER 5 Program Design and Analysis

Metha et al. [Met97] present some additional observations about energy
optimization as follows:

■ Moderate loop unrolling eliminates some loop control overhead. However,
when the loop is unrolled too much, power increases due to the lower hit
rates of straight-line code.

■ Software pipelining reduces pipeline stalls, thereby reducing the average
energy per instruction.

■ Eliminating recursive procedure calls where possible saves power by getting
rid of function call overhead. Tail recursion can often be eliminated; some
compilers do this automatically.

5.9 ANALYSIS AND OPTIMIZATION OF PROGRAM SIZE
The memory footprint of a program is determined by the size of its data and
instructions. Both must be considered to minimize program size.

Data provide an excellent opportunity for minimizing size because the data are
most highly dependent on programming style. Because inefficient programs often
keep several copies of data, identifying and eliminating duplications can lead to
significant memory savings usually with little performance penalty. Buffers should
be sized carefully—rather than defining a data array to a large size that the pro-
gram will never attain, determine the actual maximum amount of data held in the
buffer and allocate the array accordingly. Data can sometimes be packed, such as
by storing several flags in a single word and extracting them by using bit-level
operations.

A very low-level technique for minimizing data is to reuse values. For instance, if
several constants happen to have the same value, they can be mapped to the same
location. Data buffers can often be reused at several different points in the program.
This technique must be used with extreme caution,however, since subsequent ver-
sions of the program may not use the same values for the constants.A more generally
applicable technique is to generate data on the fly rather than store it. Of course,
the code required to generate the data takes up space in the program, but when
complex data structures are involved there may be some net space savings from
using code to generate data.

Minimizing the size of the instruction text of a program requires a mix of
high-level program transformations and careful instruction selection. Encapsulating
functions in subroutines can reduce program size when done carefully. Because sub-
routines have overhead for parameter passing that is not obvious from the high-level
language code,there is a minimum-size function body for which a subroutine makes
sense.Architectures that have variable-size instruction lengths are particularly good
candidates for careful coding to minimize program size,which may require assembly

5.10 Program Validation and Testing 267

language coding of key program segments. There may also be cases in which one
or a sequence of instructions is much smaller than alternative implementations—
for example, a multiply-accumulate instruction may be both smaller and faster than
separate arithmetic operations.

When reducing the number of instructions in a program, one important tech-
nique is the proper use of subroutines. If the program performs identical operations
repeatedly, these operations are natural candidates for subroutines. Even if the
operations vary somewhat, you may be able to construct a properly parameter-
ized subroutine that saves space. Of course, when considering the code size
savings, the subroutine linkage code must be counted into the equation. There
is extra code not only in the subroutine body but also in each call to the
subroutine that handles parameters. In some cases, proper instruction selection
may reduce code size; this is particularly true in CPUs that use variable-length
instructions.

Some microprocessor architectures support dense instruction sets, specially
designed instruction sets that use shorter instruction formats to encode the instruc-
tions. The ARM Thumb instruction set and the MIPS-16 instruction set for the MIPS
architecture are two examples of this type of instruction set. In many cases, a
microprocessor that supports the dense instruction set also supports the normal
instruction set, although it is possible to build a microprocessor that executes only
the dense instruction set. Special compilation modes produce the program in terms
of the dense instruction set. Program size of course varies with the type of program,
but programs using the dense instruction set are often 70 to 80% of the size of the
standard instruction set equivalents.

5.10 PROGRAM VALIDATION AND TESTING
Complex systems need testing to ensure that they work as they are intended. But
bugs can be subtle, particularly in embedded systems, where specialized hardware
and real-time responsiveness make programming more challenging. Fortunately,
there are many available techniques for software testing that can help us gener-
ate a comprehensive set of tests to ensure that our system works properly. We
examine the role of validation in the overall design methodology in Section 9.5. In
this section,we concentrate on nuts-and-bolts techniques for creating a good set of
tests for a given program.

The first question we must ask ourselves is how much testing is enough. Clearly,
we cannot test the program for every possible combination of inputs. Because we
cannot implement an infinite number of tests, we naturally ask ourselves what a
reasonable standard of thoroughness is. One of the major contributions of soft-
ware testing is to provide us with standards of thoroughness that make sense.
Following these standards does not guarantee that we will find all bugs. But by
breaking the testing problem into subproblems and analyzing each subproblem,

268 CHAPTER 5 Program Design and Analysis

we can identify testing methods that provide reasonable amounts of testing while
keeping the testing time within reasonable bounds.

The two major types of testing strategies:

■ Black-box methods generate tests without looking at the internal structure
of the program.

■ Clear-box (also known as white-box) methods generate tests based on the
program structure.

In this section we cover both types of tests, which complement each other by
exercising programs in very different ways.

5.10.1 Clear-Box Testing
The control/data flow graph extracted from a program’s source code is an important
tool in developing clear-box tests for the program. To adequately test the program,
we must exercise both its control and data operations.

In order to execute and evaluate these tests,we must be able to control variables
in the program and observe the results of computations, much as in manufacturing
testing. In general, we may need to modify the program to make it more testable.
By adding new inputs and outputs, we can usually substantially reduce the effort
required to find and execute the test. Example 5.11 illustrates the importance of
observability and controllability in software testing.

No matter what we are testing, we must accomplish the following three things
in a test:

■ Provide the program with inputs that exercise the test we are inter-
ested in.

■ Execute the program to perform the test.

■ Examine the outputs to determine whether the test was successful.

Example 5.11

Controlling and observing programs
Let’s first consider controllability by examining the following FIR filter with a limiter:

firout = 0.0; /* initialize filter output */
/* compute buff*c in bottom part of circular buffer */
for (j = curr, k = 0; j < N; j++, k++)

firout += buff[j] * c[k];
/* compute buff*c in top part of circular buffer */
for (j = 0; j < curr; j++, k++)

firout += buff[j] * c[k];
/* limit output value */

5.10 Program Validation and Testing 269

if (firout > 100.0) firout = 100.0;
if (firout < 100.0) firout = –100.0;

The above code computes the output of an FIR filter from a circular buffer of values and then
limits the maximum filter output (much as an overloaded speaker will hit a range limit). If we
want to test whether the limiting code works, we must be able to generate two out-of-range
values for firout: positive and negative. To do that, we must fill the FIR filter’s circular buffer
with N values in the proper range. Although there are many sets of values that will work, it will
still take time for us to properly set up the filter output for each test.

This code also illustrates an observability problem. If we want to test the FIR filter itself,
we look at the value of firout before the limiting code executes. We could use a debugger to
set breakpoints in the code, but this is an awkward way to perform a large number of tests.
If we want to test the FIR code independent of the limiting code, we would have to add a
mechanism for observing firout independently.

Being able to perform this process for a large number of tests entails some
amount of drudgery,but that drudgery can be alleviated with good program design
that simplifies controllability and observability.

The next task is to determine the set of tests to be performed.We need to perform
many different types of tests to be confident that we have identified a large fraction
of the existing bugs. Even if we thoroughly test the program using one criterion,
that criterion ignores other aspects of the program. Over the next few pages we
will describe several very different criteria for program testing.

The most fundamental concept in clear-box testing is the path of execution
through a program. Previously, we considered paths for performance analysis; we
are now concerned with making sure that a path is covered and determining
how to ensure that the path is in fact executed. We want to test the program
by forcing the program to execute along chosen paths. We force the execution
of a path by giving it inputs that cause it to take the appropriate branches. Exe-
cution of a path exercises both the control and data aspects of the program. The
control is exercised as we take branches; both the computations leading up to
the branch decision and other computations performed along the path exercise
the data aspects.

Is it possible to execute every complete path in an arbitrary program? The
answer is no, since the program may contain a while loop that is not guaranteed to
terminate.The same is true for any program that operates on a continuous stream of
data, since we cannot arbitrarily define the beginning and end of the data stream. If
the program always terminates, then there are indeed a finite number of complete
paths that can be enumerated from the path graph. This leads us to the next ques-
tion:Does it make sense to exercise every path?The answer to this question is no for
most programs, since the number of paths, especially for any program with a loop,
is extremely large. However, the choice of an appropriate subset of paths to test
requires some thought. Example 5.12 illustrates the consequences of two different
choices of testing strategies.

270 CHAPTER 5 Program Design and Analysis

Example 5.12

Choosing the paths to test
Two reasonable choices for a set of paths to test follow:

■ Execute every statement at least once.

■ Execute every direction of a branch at least once.

a

These conditions are equivalent for structured programming languages without gotos, but
are not the same for unstructured code. Most assembly language is unstructured, and state
machines may be coded in high-level languages with gotos.

To understand the difference between statement and branch coverage, consider the CDFG
below. We can execute every statement at least once by executing the program along two
distinct paths.

However, this leaves branch a out of the lower conditional uncovered. To ensure that we
have executed along every edge in the CDFG, we must execute a third path through the
program. This path does not test any new statements, but it does cause a to be exercised.

How do we choose a set of paths that adequately covers the program’s behavior?
Intuition tells us that a relatively small number of paths should be able to cover
most practical programs. Graph theory helps us get a quantitative handle on the

5.10 Program Validation and Testing 271

Graph

a b

e

c

d

a

b

c

d

e

Incidence matrix

a

b

c

d

e

Basis set

0 0 1 0 0

a b c d e

0 0 1 0 1

1 1 0 1 0

0 0 1 0 1

0 1 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

FIGURE 5.26

The matrix representation of a graph and its basis set.

different paths required. In an undirected graph,we can form any path through the
graph from combinations of basis paths. (Unfortunately, this property does not
strictly hold for directed graphs such as CDFGs, but this formulation still helps us
understand the nature of selecting a set of covering paths through a program.) The
term “basis set” comes from linear algebra. Figure 5.26 shows how to evaluate the
basis set of a graph. The graph is represented as an incidence matrix. Each row
and column represents a node; a1 is entered for each node pair connected by an
edge. We can use standard linear algebra techniques to identify the basis set of the
graph. Each vector in the basis set represents a primitive path. We can form new
paths by adding the vectors modulo 2. Generally,there is more than one basis set for
a graph.

The basis set property provides a metric for test coverage. If we cover all the basis
paths,we can consider the control flow adequately covered. Although the basis set
measure is not entirely accurate since the directed edges of the CDFG may make
some combinations of paths infeasible, it does provide a reasonable and justifiable
measure of test coverage.

There is a simple measure, cyclomatic complexity [McC76], which allows us
to measure the control complexity of a program. Cyclomatic complexity is an upper
bound on the size of the basis set that we found in Section 5.6.1. If e is the number
of edges in the flow graph,n the number of nodes,and p the number of components
in the graph, then the cyclomatic complexity is given by

M � e � n � 2p. (5.1)

272 CHAPTER 5 Program Design and Analysis

n 5 6

e 5 8

V(G) 5 8 2 6 1 2 5 4

3 21

FIGURE 5.27

Cyclomatic complexity.

For a structured program, M can be computed by counting the number of binary
decisions in the flow graph and adding 1. If the CDFG has higher-order branch
nodes, add b—1 for each b-way branch. In the example of Figure 5.27, the cyclo-
matic complexity evaluates to 4. Because there are actually only three distinct
paths in the graph, cyclomatic complexity in this case is an overly conservative
bound.

Another way of looking at control flow-oriented testing is to analyze the
conditions that control the conditional statements. Consider this if statement:

if ((a == b) | | (c >= d)) { ... }

This complex condition can be exercised in several different ways. If we want
to truly exercise the paths through this condition, it is prudent to exercise the
conditional’s elements in ways related to their own structure,not just the structure
of the paths through them. A simple condition testing strategy is known as branch
testing [Mye79].This strategy requires the true and false branches of a conditional
and every simple condition in the conditional’s expression to be tested at least once.
Example 5.13 illustrates branch testing.

5.10 Program Validation and Testing 273

Example 5.13

Condition testing with the branch testing strategy
Assume that the code below is what we meant to write.

if (a | | (b >= c)) { printf("OK\n"); }

The code that we mistakenly wrote instead follows:

if (a && (b >= c)) { printf("OK\n"); }

If we apply branch testing to the code we wrote, one of the tests will use these values: a = 0,
b = 3, c = 2 (making a false and b >= c true). In this case, the code should print the OK term
[0 || (3 >= 2) is true] but instead doesn’t print [0 && (3 >= 2) evaluates to false]. That test
picks up the error.

Let’s consider another more subtle error that is nonetheless all too common in C. The code
we meant to write follows:

if ((x == good_pointer) && (x->field1 == 3))
{ printf("got the value\n"); }

Here is the bad code we actually wrote:

if ((x = good_pointer) && (x->field1 == 3))
{ printf("got the value\n"); }

The problem here is that we typed = rather than ==, creating an assignment rather than a
test. The code x = good_pointer first assigns the value good_pointer to x and then, because
assignments are also expressions in C, returns good_pointer as the result of evaluating this
expression.

If we apply the principles of branch testing, one of the tests we want to use will contain
x != good_pointer and x ->field1 == 3. Whether this test catches the error depends on the
state of the record pointed to by good_pointer. If it is equal to 3 at the time of the test, the
message will be printed erroneously. Although this test is not guaranteed to uncover the bug,
it has a reasonable chance of success. One of the reasons to use many different types of tests
is to maximize the chance that supposedly unrelated elements will cooperate to reveal the
error in a particular situation.

Another more sophisticated strategy for testing conditionals is known as domain
testing [How82], illustrated in Figure 5.28. Domain testing concentrates on linear
inequalities. In the figure, the inequality the program should use for the test is
j <= i + 1. We test the inequality with three test points—two on the boundary of
the valid region and a third outside the region but between the i values of the other
two points. When we make some common mistakes in typing the inequality, these
three tests are sufficient to uncover them, as shown in the figure.

274 CHAPTER 5 Program Design and Analysis

i 5 3, j 5 5

i 5 3, j 5 5

i 5 4, j 5 5

i 5 1, j 5 2

i 5 3, j 5 5

i 5 4, j 5 5

i 5 1, j 5 2

i 5 4, j 5 5

i 5 1, j 5 2

i

Correct test

i

Incorrect tests

 j

j

i

j

j >5 i 2 1

j < 5 i 1 1

j < 5 2i 1 1

FIGURE 5.28

Domain testing for a pair of variables.

A potential problem with path coverage is that the paths chosen to cover the
CDFG may not have any important relationship to the program’s function. Another
testing strategy known as data flow testing makes use of def-use analysis
(short for definition-use analysis). It selects paths that have some relationship to
the program’s function.

The terms def and use come from compilers, which use def-use analysis for
optimization [Aho06]. A variable’s value is defined when an assignment is made to
the variable;it is used when it appears on the right side of an assignment (sometimes
called a c-use for computation use) or in a conditional expression (sometimes called
p-use for predicate use). A def-use pair is a definition of a variable’s value and a
use of that value. Figure 5.29 shows a code fragment and all the def-use pairs for the
first assignment to a. Def-use analysis can be performed on a program using iterative
algorithms. Data flow testing chooses tests that exercise chosen def-use pairs. The
test first causes a certain value to be assigned at the definition and then observes
the result at the use point to be sure that the desired value arrived there. Frankl and

5.10 Program Validation and Testing 275

a 5 mypointer;

if (c > 5){

 while (a->field1 !5 val1)

 a 5 a->next;

}

if (a->field2 55 val2)

 someproc(a,b);

FIGURE 5.29

Definitions and uses of variables.

Weyuker [Fra88] have defined criteria for choosing which def-use pairs to exercise
to satisfy a well-behaved adequacy criterion.

We can write some specialized tests for loops. Since loops are common and
often perform important steps in the program, it is worth developing loop-centric
testing methods. If the number of iterations is fixed,then testing is relatively simple.
However,many loops have bounds that are executed at run time. Consider first the
case of a single loop:

for (i = 0; i < terminate(); i++)
proc(i,array);

It would be too expensive to evaluate the above loop for all possible termina-
tion conditions. However, there are several important cases that we should try at a
minimum:

1. Skipping the loop entirely [if possible, such as when terminate() returns 0
on its first call].

2. One loop iteration.

3. Two loop iterations.

4. If there is an upper bound n on the number of loop iterations (which may
come from the maximum size of an array), a value that is significantly below
that maximum number of iterations.

5. Tests near the upper bound on the number of loop iterations, that is,n—1,n,
and n � 1.

We can also have nested loops like this:

for (i = 0; i < terminate1(); i++)
for (j = 0; j < terminate2(); j++)

for (k = 0; k < terminate3(); k++)
proc(i,j,k,array);

276 CHAPTER 5 Program Design and Analysis

There are many possible strategies for testing nested loops. One thing to keep
in mind is which loops have fixed vs. variable numbers of iterations. Beizer [Bei90]
suggests an inside-out strategy for testing loops with multiple variable iteration
bounds. First,concentrate on testing the innermost loop as above—the outer loops
should be controlled to their minimum numbers of iterations. After the inner loop
has been thoroughly tested, the next outer loop can be tested more thoroughly,
with the inner loop executing a typical number of iterations. This strategy can be
repeated until the entire loop nest has been tested. Clearly,nested loops can require
a large number of tests. It may be worthwhile to insert testing code to allow greater
control over the loop nest for testing.

5.10.2 Black-Box Testing
Black-box tests are generated without knowledge of the code being tested. When
used alone,black-box tests have a low probability of finding all the bugs in a program.
But when used in conjunction with clear-box tests they help provide a well-rounded
test set, since black-box tests are likely to uncover errors that are unlikely to be
found by tests extracted from the code structure. Black-box tests can really work.
For instance, when asked to test an instrument whose front panel was run by a
microcontroller, one acquaintance of the author used his hand to depress all the
buttons simultaneously.The front panel immediately locked up.This situation could
occur in practice if the instrument were placed face-down on a table,but discovery
of this bug would be very unlikely via clear-box tests.

One important technique is to take tests directly from the specification for the
code under design. The specification should state which outputs are expected for
certain inputs. Tests should be created that provide specified outputs and evaluate
whether the results also satisfy the inputs.

We can’t test every possible input combination, but some rules of thumb help
us select reasonable sets of inputs. When an input can range across a set of values,
it is a very good idea to test at the ends of the range. For example, if an input must
be between 1 and 10, 0, 1, 10, and 11 are all important values to test. We should
be sure to consider tests both within and outside the range, such as, testing values
within the range and outside the range. We may want to consider tests well outside
the valid range as well as boundary-condition tests.

Random tests form one category of black-box test. Random values are gener-
ated with a given distribution.The expected values are computed independently of
the system, and then the test inputs are applied. A large number of tests must be
applied for the results to be statistically significant,but the tests are easy to generate.

Another scenario is to test certain types of data values. For example, integer-
valued inputs can be generated at interesting values such as 0,1,and values near the
maximum end of the data range. Illegal values can be tested as well.

Regression tests form an extremely important category of tests. When tests
are created during earlier stages in the system design or for previous versions
of the system, those tests should be saved to apply to the later versions of the

5.10 Program Validation and Testing 277

system. Clearly,unless the system specification changed, the new system should be
able to pass old tests. In some cases old bugs can creep back into systems, such
as when an old version of a software module is inadvertently installed. In other
cases regression tests simply exercise the code in different ways than would be
done for the current version of the code and therefore possibly exercise different
bugs.

Some embedded systems, particularly digital signal processing systems, lend
themselves to numerical analysis. Signal processing algorithms are frequently imple-
mented with limited-range arithmetic to save hardware costs. Aggressive data sets
can be generated to stress the numerical accuracy of the system. These tests can
often be generated from the original formulas without reference to the source
code.

5.10.3 Evaluating Function Tests
How much testing is enough? Horgan and Mathur [Hor96] evaluated the coverage
of two well-known programs, TeX and awk. They used functional tests for these
programs that had been developed over several years of extensive testing. Upon
applying those functional tests to the programs, they obtained the code coverage
statistics shown in Figure 5.30.The columns refer to various types of test coverage:
block refers to basic blocks, decision to conditionals, p-use to a use of a variable
in a predicate (decision), and c-use to variable use in a nonpredicate computation.
These results are at least suggestive that functional testing does not fully exercise
the code and that techniques that explicitly generate tests for various pieces of code
are necessary to obtain adequate levels of code coverage.

Methodological techniques are important for understanding the quality of your
tests. For example, if you keep track of the number of bugs tested each day, the
data you collect over time should show you some trends on the number of errors
per page of code to expect on the average, how many bugs are caught by certain
kinds of tests, and so on. We address methodological approaches to quality control
in more detail in Section 9.5.

One interesting method for analyzing the coverage of your tests is error injec-
tion. First, take your existing code and add bugs to it, keeping track of where the
bugs were added.Then run your existing tests on the modified program. By counting
the number of added bugs your tests found, you can get an idea of how effective

TeX

awk

85%

Block

70%

72%

Decision

59%

53%

P-use

48%

48%

C-use

55%

FIGURE 5.30

Code coverage of functional tests for TeX and awk (after Horgan and Mathur [Hor96]).

278 CHAPTER 5 Program Design and Analysis

the tests are in uncovering the bugs you haven’t yet found. This method assumes
that you can deliberately inject bugs that are of similar varieties to those created
naturally by programming errors.

If the bugs are too easy or too difficult to find or simply require different types
of tests, then bug injection’s results will not be relevant. Of course, it is essential
that you finally use the correct code, not the code with added bugs.

5.11 SOFTWARE MODEM
In this section we design a modem. Low-cost modems generally use specialized
chips, but some PCs implement the modem functions in software. Before jump-
ing into the modem design itself, we discuss principles of how to transmit digital
data over a telephone line. We will then go through a specification and discuss
architecture, module design, and testing.

5.11.1 Theory of Operation and Requirements
The modem will use frequency-shift keying (FSK),a technique used in 1200-baud
modems. Keying alludes to Morse code—style keying.As shown in Figure 5.31, the
FSK scheme transmits sinusoidal tones, with 0 and 1 assigned to different frequen-
cies. Sinusoidal tones are much better suited to transmission over analog phone
lines than are the traditional high and low voltages of digital circuits. The 01 bit pat-
terns create the chirping sound characteristic of modems. (Higher-speed modems

Time

0 1

FIGURE 5.31

Frequency-shift keying.

5.11 Software Modem 279

0 bit

1 bit

A
/D

 c
o

n
ve

rt
er

Zero filter Detector

DetectorOne filter

FIGURE 5.32

The FSK detection scheme.

are backward compatible with the 1200-baud FSK scheme and begin a transmission
with a protocol to determine which speed and protocol should be used.)

The scheme used to translate the audio input into a bit stream is illustrated in
Figure 5.32.The analog input is sampled and the resulting stream is sent to two digital
filters (such as an FIR filter). One filter passes frequencies in the range that represents
a 0 and rejects the 1-band frequencies, and the other filter does the converse. The
outputs of the filters are sent to detectors, which compute the average value of
the signal over the past n samples. When the energy goes above a threshold value,
the appropriate bit is detected.

We will send data in units of 8-bit bytes.The transmitting and receiving modems
agree in advance on the length of time during which a bit will be transmitted
(otherwise known as the baud rate). But the transmitter and receiver are physically
separated and therefore are not synchronized in any way. The receiving modem
does not know when the transmitter has started to send a byte. Furthermore, even
when the receiver does detect a transmission, the clock rates of the transmitter and
receiver may vary somewhat,causing them to fall out of sync. In both cases,we can
reduce the chances for error by sending the waveforms for a longer time.

The receiving process is illustrated in Figure 5.33. The receiver will detect the
start of a byte by looking for a start bit,which is always 0. By measuring the length of
the start bit, the receiver knows where to look for the start of the first bit. However,
since the receiver may have slightly misjudged the start of the bit, it does not imme-
diately try to detect the bit. Instead, it runs the detection algorithm at the predicted
middle of the bit.

The modem will not implement a hardware interface to a telephone line or
software for dialing a phone number. We will assume that we have analog audio
inputs and outputs for sending and receiving. We will also run at a much slower bit
rate than 1200 baud to simplify the implementation. Next, we will not implement
a serial interface to a host, but rather put the transmitter’s message in memory and
save the receiver’s result in memory as well. Given those understandings, let’s fill
out the requirements table.

280 CHAPTER 5 Program Design and Analysis

Time

Start bit Bit

Sampling interval

FIGURE 5.33

Receiving bits in the modem.

Name Modem.
Purpose A fixed baud rate frequency-shift keyed modem.
Inputs Analog sound input, reset button.
Outputs Analog sound output, LED bit display.
Functions Transmitter: Sends data stored in microprocessor

memory in 8-bit bytes. Sends start bit for each byte
equal in length to one bit.
Receiver: Automatically detects bytes and stores
results in main memory. Displays currently received
bit on LED.

Performance 1200 baud.
Manufacturing cost Dominated by microprocessor and analog I/O.
Power Powered by AC through a standard power supply.
Physical size and weight Small and light enough to fit on a desktop.

5.11.2 Specification
The basic classes for the modem are shown in Figure 5.34.

5.11.3 System Architecture
The modem consists of one small subsystem (the interrupt handlers for the samples)
and two major subsystems (transmitter and receiver).Two sample interrupt handlers
are required, one for input and another for output, but they are very simple. The
transmitter is simpler, so let’s consider its software architecture first.

5.11 Software Modem 281

Line-in* Receiver Transmitter

bit-in()
sample-out()

sample-in()
bit-out()

input()

Line-out*

output()

11 11

FIGURE 5.34

Class diagram for the modem.

Time
Table

float sine_wave[N_SAMP] �
 { 0.0, 0.5, 0.866, 1,
 0.866, 0.5, 0.0, –0.5,
 0.866, –1.0, –0.866, –0.5,
 0};

Analog waveform and samples

FIGURE 5.35

Waveform generation by table lookup.

The best way to generate waveforms that retain the proper shape over long
intervals is table lookup. Software oscillators can be used to generate periodic
signals, but numerical problems limit their accuracy. Figure 5.35 shows an analog
waveform with sample points and the C code for these samples. Table lookup can
be combined with interpolation to generate high-resolution waveforms without
excessive memory costs, which is more accurate than oscillators because no feed-
back is involved. The required number of samples for the modem can be found by
experimentation with the analog/digital converter and the sampling code.

The structure of the receiver is considerably more complex.The filters and detec-
tors of Figure 5.33 can be implemented with circular buffers. But that module must
feed a state machine that recognizes the bits. The recognizer state machine must
use a timer to determine when to start and stop computing the filter output average
based on the starting point of the bit. It must then determine the nature of the
bit at the proper interval. It must also detect the start bit and measure it using the

282 CHAPTER 5 Program Design and Analysis

counter. The receiver sample interrupt handler is a natural candidate to double as
the receiver timer since the receiver’s time points are relative to samples.

The hardware architecture is relatively simple. In addition to the analog/digital
and digital/analog converters, a timer is required. The amount of memory required
to implement the algorithms is relatively small.

5.11.4 Component Design and Testing
The transmitter and receiver can be tested relatively thoroughly on the host platform
since the timing-critical code only delivers data samples. The transmitter’s output
is relatively easy to verify, particularly if the data are plotted. A testbench can be
constructed to feed the receiver code sinusoidal inputs and test its bit recognition
rate. It is a good idea to test the bit detectors first before testing the complete
receiver operation. One potential problem in host-based testing of the receiver is
encountered when library code is used for the receiver function. If a DSP library
for the target processor is used to implement the filters, then a substitute must be
found or built for the host processor testing. The receiver must then be retested
when moved to the target system to ensure that it still functions properly with the
library code.

Care must be taken to ensure that the receiver does not run too long and miss
its deadline. Since the bulk of the computation is in the filters, it is relatively simple
to estimate the total computation time early in the implementation process.

5.11.5 System Integration and Testing
There are two ways to test the modem system: by having the modem’s transmitter
send bits to its receiver, and or by connecting two different modems. The ultimate
test is to connect two different modems,particularly modems designed by different
people to be sure that incompatible assumptions or errors were not made. But
single-unit testing, called loop-back testing in the telecommunications industry,
is simpler and a good first step. Loop-back can be performed in two ways. First, a
shared variable can be used to directly pass data from the transmitter to the receiver.
Second, an audio cable can be used to plug the analog output to the analog input.
In this case it is also possible to inject analog noise to test the resiliency of the
detection algorithm.

SUMMARY
The program is a very fundamental unit of embedded system design and it usually
contains tightly interacting code. Because we care about more than just functionality,
we need to understand how programs are created. Because today’s compilers do not
take directives such as“compile this to run in <1 �s,” we have to be able to optimize
the programs ourselves for speed, power, and space. Our earlier understanding
of computer architecture is critical to our ability to perform these optimizations.

Questions 283

We also need to test programs to make sure they do what we want. Some of our
testing techniques can also be useful in exercising the programs for performance
optimization.

What We Learned

■ We can use data flow graphs to model straight-line code and CDFGs to model
complete programs.

■ Compilers perform numerous tasks,such as generating control flow,assigning
variables to registers, creating procedure linkages, and so on.

■ Remember the performance optimization equation: execution time �
program path � instruction timing.

■ Memory and cache optimizations are very important to performance opti-
mization.

■ Optimizing for power consumption often goes hand in hand with performance
optimization.

■ Optimizing programs for size is possible, but don’t expect miracles.

■ Programs can be tested as black boxes (without knowing the code) or as clear
boxes (by examining the code structure).

FURTHER READING
Aho, Sethi, and Ullman [Aho06] wrote a classic text on compilers, and Muchnick
[Muc97] describes advanced compiler techniques in detail. A paper on the ATOM
system [Sri94] provides a good description of instrumenting programs for gathering
traces. Cramer et al. [Cra97] describe the Java JIT compiler. Li and Malik [Li97]
describe a method for statically analyzing program performance. Banerjee [Ban93,
Ban94] describes loop transformations. Two books by Beizer, one on fundamental
functional and structural testing techniques [Bei90] and the other on system-level
testing [Bei84], provide comprehensive introductions to software testing and, as a
bonus, are well written. Lyu [Lyu96] provides a good advanced survey of software
reliability. Walsh [Wal97] describes a software modem implemented on an ARM
processor.

QUESTIONS
Q5-1 Write C code for a state machine that implements a four-cycle handshake.

Q5-2 Write C code for a program that takes two values from an input circular
buffer and puts the sum of those two values into a separate output circular
buffer.

284 CHAPTER 5 Program Design and Analysis

Q5-3 Write C code for a producer/consumer program that takes one value from
one input queue,another value from another input queue,and puts the sum
of those two values into a separate queue.

Q5-4 For each basic block given below, rewrite it in single-assignment form, and
then draw the data flow graph for that form.

a. x = a + b;

y = c + d;

z = x + e;

b. r = a + b - c;

s = 2 * r;

t = b - d;

r = d + e;

c. a = q - r;

b = a + t;

a = r + s;

c = t - u;

d. w = a - b + c;

x = w - d;

y = x - 2;

w = a + b - c;

z = y + d;

y = b * c;

Q5-5 Draw the CDFG for the following code fragments:

a. if (y == 2) {r = a + b; s = c - d;}

else r = a - c

b. x = 1; if (y == 2) { r = a + b; s = c - d; }

else { r = a - c; }

c. x = 2;

while (x < 40) {

x = foo[x];

}

d. for (i = 0; i < N; i++)

x[i] = a[i]*b[i];

Questions 285

e. for (i = 0; i < N; i++) {

if (a[i] == 0)

x[i] = 5;

else

x[i] = a[i]*b[i];

}

Q5-6 Show the contents of the assembler’s symbol table at the end of code
generation for each line of the following programs:

a. ORG 200

p1 ADR r4,a

LDR r0,[r4]

ADR r4,e

LDR r1,[r4]

ADD r0,r0,r1

CMP r0,r1

BNE q1

p2 ADR r4,e

b. ORG 100

p1 CMP r0,r1

BEQ x1

p2 CMP r0,r2

BEQ x2

p3 CMP r0,r3

BEQ x3

Q5-7 Your linker uses a single pass through the set of given object files to find
and resolve external references. Each object file is processed in the order
given,all external references are found,and then the previously loaded files
are searched for labels that resolve those references. Will this linker be able
to successfully load a program with these external references and entry
points?

Object file Entry points External references

o1 a, b, c, d s, t
o2 r, s, t w, y, d
o3 w, x, y, z a, c, d

286 CHAPTER 5 Program Design and Analysis

Q5-8 Provide the required order of execution of operations in these data flow
graphs. If several operations can be performed in arbitrary order,show them
as a set: {a � b, c � d}.

a.

a b

�

�

c d

e

�

�

b.

a b

c

1

2

d e

f

1

1

Q5-9 Draw the CDFG for the following C code before and after applying dead
code elimination to the if statement:

#define DEBUG 0
proc1();
if (DEBUG) debug_stuff();
switch (foo) {

case A: a_case();
case B: b_case();
default: default_case();
}

Questions 287

Q5-10 Unroll the loop below

a. two times

b. three times

for (i = 0; i < 32; i++)
x[i] = a[i] * c[i];

Q5-11 Can you apply code motion to the following example? Explain.

for (i = 0; i < N; i++)
for (j = 0; j < M; j++)

z[i][j] = a[i] * b[i][j];

Q5-12 For each of the basic blocks of question Q5-4,determine the minimum num-
ber of registers required to perform the operations when they are executed
in the order shown in the code. (You can assume that all computed values
are used outside the basic blocks,so that no assignments can be eliminated.)

Q5-13 For each of the basic blocks of question Q5-4,determine the order of execu-
tion of operations that gives the smallest number of required registers. Next,
state the number of registers required in each case. (You can assume that all
computed values are used outside the basic blocks, so that no assignments
can be eliminated.)

Q5-14 Draw a data flow graph for the code fragment of Example 5.5. Assign an
order of execution to the nodes in the graph so that no more than four
registers are required. Explain how you arrived at your solution using the
structure of the data flow graph.

Q5-15 Determine the longest path through each code fragment, assuming that all
statements can be executed in equal time and that all branch directions are
equally probable.

a. if (i < CONST1) { x = a + b; }

else { x = c – d; y = e + f; }

b. for (i = 0; i < 32; i++)

if (a[i] < CONST2)

x[i] = a[i] * c[i];

c. if (a < CONST3) {

if (b < CONST4)

w = r + s;

else {

w = r – s;

288 CHAPTER 5 Program Design and Analysis

x = s + t;

}

} else {

if (c > CONST5) {

w = r + t;

x = r – s;

y = s + u;

}

}

Q5-16 For each of the code fragments of question Q5-14, determine the short-
est path through each code fragment, assuming that all statements can be
executed in equal time and that all branch directions are equally probable.

Q5-17 The loop appearing below is executed on a machine that has a 1K word
data cache with four words per cache line.

a. How must x and a be placed relative to each other in memory to produce
a conflict miss every time the inner loop’s body is executed?

b. How must x and a be placed relative to each other in memory to produce
a conflict miss one out of every four times the inner loop’s body is
executed?

c. How must x and a be placed relative to each other in memory to produce
no conflict misses?

for (i = 0; i < 50; i++)
for (j = 0; j < 4; j++)

x[i][j] = a[i][j] * c[i];

Q5-18 Explain why the person generating clear-box program tests should not be
the person who wrote the code being tested.

Q5-19 Find the cyclomatic complexity of the CDFGs for each of the code fragments
given below.

a. if (a < b) {

if (c < d)

x = 1;

else

x = 2;

} else {

if (e < f)

x = 3;

Questions 289

else

x = 4;

}

b. switch (state) {

case A:

if (x = 1) { r = a + b; state = B; }

else { s = a – b; state = C; }

break;

case B:

s = c + d;

state = A;

break;

case C:

if (x < 5) { r = a – f; state = D; }

else if (x == 5) { r = b + d; state = A; }

else { r = c + e; state = D; }

break;

case D:

r = r + 1;

state = D;

break;

}

c. for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

x[i][j] = a[i][j] * c[i];

Q5-20 Use the branch condition testing strategy to determine a set of tests for each
of the following statements.

a. if (a < b | | ptr1 == NULL) proc1();

else proc2();

b. switch (x) {

case 0: proc1(); break;

case 1: proc2(); break;

case 2: proc3(); break;

case 3: proc4(); break;

default; dproc(); break;

}

290 CHAPTER 5 Program Design and Analysis

c. if (a < 5 && b > 7) proc1();

else if (a < 5) proc2();

else if (b > 7) proc3();

else proc4();

Q5-21 Find all the def-use pairs for each code fragment given below.

a. x = a + b;

if (x < 20) proc1();

else {

y = c + d;

while (y < 10)

y = y + e;

}

b. r = 10;

s = a – b;

for (i = 0; i < 10; i++)

x[i] = a[i] * b[s];

c. x = a – b;

y = c – d;

z = e – f;

if (x < 10) {

q = y + e;

z = e + f;

}

if (z < y) proc1();

Q5-22 For each of the code fragments of question Q5-21, determine values
for the variables that will cause each def-use pair to be exercised at
least once.

Q5-23 Assume you want to use random tests on an FIR filter program. How would
you know when the program under test is executing correctly?

Q5-24 Generate a set of functional tests for a moderate-size program. Evaluate
your test coverage in one of two ways: Have someone else independently
identify bugs and see how many of those bugs your tests catch (and how
many tests they catch that were not found by the human inspector); or
inject bugs into the code and see how many of those are caught by your
tests.

Lab Exercises 291

LAB EXERCISES
L5-1 Compare the source code and assembly code for a moderate-size program.

(Most C compilers will provide an assembly language listing with the -s flag.)
Can you trace the high-level language statements in the assembly code? Can
you see any optimizations that can be done on the assembly code?

L5-2 Write C code for an FIR filter. Measure the execution time of the filter, either
using a simulator or by measuring the time on a running microprocessor.Vary
the number of taps in the FIR filter and measure execution time as a function
of the filter size.

L5-3 Generate a trace for a program using software techniques. Use the trace to
analyze the program’s cache behavior.

L5-4 Use a cycle-accurate CPU simulator to determine the execution time of a
program.

L5-5 Measure the power consumption of your microprocessor on a simple block
of code.

L5-6 Use software testing techniques to determine how well your input sequences
to the cycle-accurate simulator exercise of your program.

This page intentionally left blank

CHAPTER

6Processes and Operating
Systems

■ The process abstraction.

■ Switching contexts between programs.

■ Real-time operating systems (RTOSs).

■ Interprocess communication.

■ Task-level performance analysis and power consumption.

■ A telephone answering machine design.

INTRODUCTION
Although simple applications can be programmed on a microprocessor by writing
a single piece of code,many applications are sophisticated enough that writing one
large program does not suffice. When multiple operations must be performed at
widely varying times,a single program can easily become too complex and unwieldy.
The result is spaghetti code that is too difficult to verify for either performance or
functionality.

This chapter studies the two fundamental abstractions that allow us to build
complex applications on microprocessors: the process and the operating sys-
tem (OS). Together, these two abstractions let us switch the state of the processor
between multiple tasks. The process cleanly defines the state of an executing pro-
gram, while the OS provides the mechanism for switching execution between
the processes.

These two mechanisms together let us build applications with more complex
functionality and much greater flexibility to satisfy timing requirements. The need
to satisfy complex timing requirements—events happening at very different rates,
intermittent events,and so on—causes us to use processes and OSs to build embed-
ded software. Satisfying complex timing tasks can introduce extremely complex
control into programs. Using processes to compartmentalize functions and encap-
sulating in the OS the control required to switch between processes make it
much easier to satisfy timing requirements with relatively clean control within the
processes.

293

294 CHAPTER 6 Processes and Operating Systems

We are particularly interested in real-time operating systems (RTOSs),which
are OSs that provide facilities for satisfying real-time requirements.A RTOS allocates
resources using algorithms that take real time into account. General-purpose OSs,
in contrast, generally allocate resources using other criteria like fairness. Trying to
allocate the CPU equally to all processes without regard to time can easily cause
processes to miss their deadlines.

In the next section, we will introduce the concepts of task and process.
Section 6.2 looks at how the RTOS implements processes. Section 6.3 develops algo-
rithms for scheduling those processes to meet real-time requirements. Section 6.4
introduces some basic concepts in interprocess communication. Section 6.5 con-
siders the performance of RTOSs while Section 6.6 looks at power consumption.
Section 6.7 walks through the design of a telephone answering machine.

6.1 MULTIPLE TASKS AND MULTIPLE PROCESSES
Most embedded systems require functionality and timing that is too complex to
embody in a single program. We break the system into multiple tasks in order to
manage when things happen. In this section we will develop the basic abstractions
that will be manipulated by the RTOS to build multirate systems.

6.1.1 Tasks and Processes
Many (if not most) embedded computing systems do more than one thing—that is,
the environment can cause mode changes that in turn cause the embedded system
to behave quite differently. For example, when designing a telephone answering
machine, we can define recording a phone call and operating the user’s control
panel as distinct tasks, because they perform logically distinct operations and they
must be performed at very different rates. These different tasks are part of the
system’s functionality,but that application-level organization of functionality is often
reflected in the structure of the program as well.

A process is a single execution of a program. If we run the same program
two different times, we have created two different processes. Each process has
its own state that includes not only its registers but all of its memory. In some
OSs, the memory management unit is used to keep each process in a separate
address space. In others, particularly lightweight RTOSs, the processes run in the
same address space. Processes that share the same address space are often called
threads.

In this book, we will use the terms tasks and processes somewhat interchange-
ably, as do many people in the field. To be more precise, task can be composed of
several processes or threads; it is also true that a task is primarily an implementation
concept and process more of an implementation concept.

6.1 Multiple Tasks and Multiple Processes 295

To understand why the separation of an application into tasks may be reflected
in the program structure, consider how we would build a stand-alone compression
unit based on the compression algorithm we implemented in Section 3.7. As shown
in Figure 6.1, this device is connected to serial ports on both ends.The input to the
box is an uncompressed stream of bytes.The box emits a compressed string of bits
on the output serial line,based on a predefined compression table. Such a box may
be used, for example, to compress data being sent to a modem.

The program’s need to receive and send data at different rates—for example, the
program may emit 2 bits for the first byte and then 7 bits for the second byte—
will obviously find itself reflected in the structure of the code. It is easy to create
irregular, ungainly code to solve this problem; a more elegant solution is to create
a queue of output bits, with those bits being removed from the queue and sent to
the serial port in 8-bit sets. But beyond the need to create a clean data structure that
simplifies the control structure of the code,we must also ensure that we process the
inputs and outputs at the proper rates. For example, if we spend too much time in
packaging and emitting output characters,we may drop an input character. Solving
timing problems is a more challenging problem.

Compressor

Character Bit queue

C
o

m
p

re
ss

so
r

Compression table

Uncompressed
data

Serial line Serial line Compressed
data

FIGURE 6.1

An on-the-fly compression box.

296 CHAPTER 6 Processes and Operating Systems

The text compression box provides a simple example of rate control problems.
A control panel on a machine provides an example of a different type of rate con-
trol problem,the asynchronous input .The control panel of the compression box
may, for example, include a compression mode button that disables or enables com-
pression, so that the input text is passed through unchanged when compression
is disabled. We certainly do not know when the user will push the compression
mode button—the button may be depressed asynchronously relative to the arrival
of characters for compression.

We do know, however, that the button will be depressed at a much lower rate
than characters will be received, since it is not physically possible for a person to
repeatedly depress a button at even slow serial line rates. Keeping up with the input
and output data while checking on the button can introduce some very complex
control code into the program. Sampling the button’s state too slowly can cause
the machine to miss a button depression entirely, but sampling it too frequently
and duplicating a data value can cause the machine to incorrectly compress data.
One solution is to introduce a counter into the main compression loop, so that a
subroutine to check the input button is called once every n times the compression
loop is executed. But this solution does not work when either the compression
loop or the button-handling routine has highly variable execution times—if the
execution time of either varies significantly, it will cause the other to execute later
than expected,possibly causing data to be lost. We need to be able to keep track of
these two different tasks separately,applying different timing requirements to each.
This is the sort of control that processes allow.

The above two examples illustrate how requirements on timing and execution
rate can create major problems in programming. When code is written to satisfy
several different timing requirements at once, the control structures necessary to
get any sort of solution become very complex very quickly. Worse, such complex
control is usually quite difficult to verify for either functional or timing properties.

6.1.2 Multirate Systems
Implementing code that satisfies timing requirements is even more complex when
multiple rates of computation must be handled. Multirate embedded computing
systems are very common, including automobile engines,printers, and cell phones.
In all these systems,certain operations must be executed periodically,and each oper-
ation is executed at its own rate.Application Example 6.1 describes why automobile
engines require multirate control.

Application Example 6.1

Automotive engine control
The simplest automotive engine controllers, such as the ignition controller for a basic motor-
cycle engine, perform only one task—timing the firing of the spark plug, which takes the place

6.1 Multiple Tasks and Multiple Processes 297

of a mechanical distributor. The spark plug must be fired at a certain point in the combustion
cycle, but to obtain better performance, the phase relationship between the piston’s move-
ment and the spark should change as a function of engine speed. Using a microcontroller
that senses the engine crankshaft position allows the spark timing to vary with engine speed.
Firing the spark plug is a periodic process (but note that the period depends on the engine’s
operating speed).

Engine
controller

Spark plug

Crankshaft position

The control algorithm for a modern automobile engine is much more complex, making
the need for microprocessors that much greater. Automobile engines must meet strict
requirements (mandated by law in the United States) on both emissions and fuel economy.
On the other hand, the engines must still satisfy customers not only in terms of perfor-
mance but also in terms of ease of starting in extreme cold and heat, low maintenance, and
so on.

Automobile engine controllers use additional sensors, including the gas pedal position and
an oxygen sensor used to control emissions. They also use a multimode control scheme. For
example, one mode may be used for engine warm-up, another for cruise, and yet another
for climbing steep hills, and so forth. The larger number of sensors and modes increases
the number of discrete tasks that must be performed. The highest-rate task is still firing the
spark plugs. The throttle setting must be sampled and acted upon regularly, although not as
frequently as the crankshaft setting and the spark plugs. The oxygen sensor responds much
more slowly than the throttle, so adjustments to the fuel/air mixture suggested by the oxygen
sensor can be computed at a much lower rate.

The engine controller takes a variety of inputs that determine the state of the engine.
It then controls two basic engine parameters: the spark plug firings and the fuel/air mix-
ture. The engine control is computed periodically, but the periods of the different inputs and
outputs range over several orders of magnitude of time. An early paper on automotive elec-
tronics by Marley [Mar78] described the rates at which engine inputs and outputs must be
handled.

298 CHAPTER 6 Processes and Operating Systems

Variable Time to move full range (ms) Update period (ms)

Engine spark timing 300 2
Throttle 40 2
Airflow 30 4
Battery voltage 80 4
Fuel flow 250 10
Recycled exhaust gas 500 25
Set of status switches 100 50
Air temperature seconds 500
Barometric pressure seconds 1000
Spark/dwell 10 1
Fuel adjustments 80 4
Carburetor adjustments 500 25
Mode actuators 100 100

6.1.3 Timing Requirements on Processes
Processes can have several different types of timing requirements imposed on them
by the application.The timing requirements on a set of processes strongly influence
the type of scheduling that is appropriate.A scheduling policy must define the timing
requirements that it uses to determine whether a schedule is valid. Before studying
scheduling proper, we outline the types of process timing requirements that are
useful in embedded system design.

Figure 6.2 illustrates different ways in which we can define two important
requirements on processes: release time and deadline. The release time is the
time at which the process becomes ready to execute; this is not necessarily the
time at which it actually takes control of the CPU and starts to run. An aperiodic
process is by definition initiated by an event, such as external data arriving or data
computed by another process. The release time is generally measured from that
event, although the system may want to make the process ready at some interval
after the event itself. For a periodically executed process, there are two common
possibilities. In simpler systems, the process may become ready at the beginning
of the period. More sophisticated systems, such as those with data dependencies
between processes, may set the release time at the arrival time of certain data, at a
time after the start of the period.

A deadline specifies when a computation must be finished. The deadline for
an aperiodic process is generally measured from the release time, since that is the
only reasonable time reference. The deadline for a periodic process may in general
occur at some time other than the end of the period. As seen in Section 6.3.1, some
scheduling policies make the simplifying assumption that the deadline occurs at
the end of the period.

6.1 Multiple Tasks and Multiple Processes 299

P1

Deadline

Release time
Aperiodic process

Time

P1

Deadline

Release time

Periodic process initiated at start of period

Time

Period

P1

Deadline

Release time

Periodic process released by event

Time

Period

FIGURE 6.2

Example definitions of release times and deadlines.

Rate requirements are also fairly common. A rate requirement specifies how
quickly processes must be initiated. The period of a process is the time between
successive executions. For example, the period of a digital filter is defined by the
time interval between successive input samples.The process’s rate is the inverse of
its period. In a multirate system,each process executes at its own distinct rate.The
most common case for periodic processes is for the initiation interval to be equal to
the period. However,pipelined execution of processes allows the initiation interval
to be less than the period. Figure 6.3 illustrates process execution in a system with
four CPUs.The various execution instances of program P1 have been subscripted to
distinguish their initiation times. In this case, the initiation interval is equal to one-
fourth of the period. It is possible for a process to have an initiation rate less than
the period even in single-CPU systems. If the process execution time is significantly
less than the period, it may be possible to initiate multiple copies of a program at
slightly offset times.

300 CHAPTER 6 Processes and Operating Systems

P1i P1i 1 4CPU 1

P1i 1 1 P1i 1 5CPU 2

P1i 1 2 P1i 1 6CPU 3

P1i 1 3 P1i 1 7CPU 4

Time

FIGURE 6.3

A sequence of processes with a high initiation rate.

What happens when a process misses a deadline? The practical effects of a timing
violation depend on the application—the results can be catastrophic in an automo-
tive control system,whereas a missed deadline in a multimedia system may cause an
audio or video glitch.The system can be designed to take a variety of actions when
a deadline is missed. Safety-critical systems may try to take compensatory measures
such as approximating data or switching into a special safety mode. Systems for
which safety is not as important may take simple measures to avoid propagating
bad data, such as inserting silence in a phone line, or may completely ignore the
failure.

Even if the modules are functionally correct, their timing improper behavior
can introduce major execution errors. Application Example 6.2 describes a timing
problem in space shuttle software that caused the delay of the first launch of the
shuttle.

Application Example 6.2

A space shuttle software error
Garman [Gar81] describes a software problem that delayed the first launch of the U.S. space
shuttle. No one was hurt and the launch proceeded after the computers were reset. However,
this bug was serious and unanticipated.

The shuttle’s primary control system was known as the Primary Avionics Software System
(PASS). It used four computers to monitor events, with the four machines voting to ensure
fault tolerance. Four computers allowed one machine to fail while still leaving three operating
machines to vote, such that a majority vote would still be possible to determine operating pro-
cedures. If at least two machines failed, control was to be turned over to a fifth computer called
the Backup Flight Control System (BFS). The BFS used the same computer, requirements,
programming language, and compiler, but it was developed by a different organization than
the one that built the PASS to ensure that methodological errors did not cause simultaneous
failure of both systems. The switchover from PASS to BFS was controlled by the astronauts.

6.1 Multiple Tasks and Multiple Processes 301

During normal operation, the BFS would listen to the operation of the PASS computers so
that it could keep track of the state of the shuttle. However, BFS would stop listening when it
thought that PASS was compromising data fetching. This would prevent PASS failures from
inadvertently destroying the state of the BFS. PASS used an asynchronous, priority-driven
software architecture. If high-priority processes take too much time, the OS can skip or delay
lower-priority processing. The BFS, in contrast, used a time-slot system that allocated a fixed
amount of time to each process. Since the BFS monitored the PASS, it could get confused
by temporary overloads on the primary system. As a result, the PASS was changed late in the
design cycle to make its behavior more amenable to the backup system.

On the morning of the launch attempt, the BFS failed to synchronize itself with the primary
system. It saw the events on the PASS system as inconsistent and therefore stopped listening
to PASS behavior. It turned out that all PASS and BFS processing had been running late
relative to telemetry data. This occurred because the system incorrectly calculated its start
time.

After much analysis of system traces and software, it was determined that a few minor
changes to the software had caused the problem. First, about 2 years before the incident,
a subroutine used to initialize the data bus was modified. Since this routine was run prior to
calculating the start time, it introduced an additional, unnoticed delay into that computation.
About a year later, a constant was changed in an attempt to fix that problem. As a result of
these changes, there was a 1 in 67 probability for a timing problem. When this occurred,
almost all computations on the computers would occur a cycle late, leading to the observed
failure. The problems were difficult to detect in testing since they required running through all
the initialization code; many tests start with a known configuration to save the time required to
run the setup code. The changes to the programs were also not obviously related to the final
changes in timing.

The order of execution of processes may be constrained when the processes
pass data between each other. Figure 6.4 shows a set of processes with data depen-
dencies among them. Before a process can become ready,all the processes on which
it depends must complete and send their data to it. The data dependencies define
a partial ordering on process execution—P1 and P2 can execute in any order (or
in interleaved fashion) but must both complete before P3, and P3 must complete
before P4.All processes must finish before the end of the period.The data dependen-
cies must form a directed acyclic graph (DAG)—a cycle in the data dependencies is
difficult to interpret in a periodically executed system.

A set of processes with data dependencies is known as a task graph. Although
the terminology for elements of a task graph varies from author to author, we will
consider a component of the task graph (a set of nodes connected by data depen-
dencies) as a task and the complete graph as the task set . Figure 6.4 also shows
a second task with two processes. The two tasks ({P1, P2, P3, P4} and {P5, P6})
have no timing relationships between them.

Communication among processes that run at different rates cannot be repre-
sented by data dependencies because there is no one-to-one relationship between
data coming out of the source process and going into the destination process.

302 CHAPTER 6 Processes and Operating Systems

P1 P2

P3

P4

P5

P6

FIGURE 6.4

Data dependencies among processes.

System Video Audio

FIGURE 6.5

Communication among processes at different rates.

Nevertheless, communication among processes of different rates is very common.
Figure 6.5 illustrates the communication required among three elements of an
MPEG audio/video decoder. Data come into the decoder in the system format,
which multiplexes audio and video data. The system decoder process demulti-
plexes the audio and video data and distributes it to the appropriate processes.
Multirate communication is necessarily one way—for example, the system pro-
cess writes data to the video process, but a separate communication mechanism
must be provided for communication from the video process back to the system
process.

6.1.4 CPU Metrics
We also need some terminology to describe how the process actually executes.The
initiation time is the time at which a process actually starts executing on the CPU.
The completion time is the time at which the process finishes its work.

The most basic measure of work is the amount of CPU time expended by
a process. The CPU time of process i is called Ci . Note that the CPU time is not
equal to the completion time minus initiation time; several other processes may
interrupt execution. The total CPU time consumed by a set of processes is

6.1 Multiple Tasks and Multiple Processes 303

T �
∑

1 � i �n

Ti . (6.1)

We need a basic measure of the efficiency with which we use the CPU. The
simplest and most direct measure is utilization:

U �
CPU time for useful work

total available CPU time
. (6.2)

Utilization is the ratio of the CPU time that is being used for useful computations
to the total available CPU time. This ratio ranges between 0 and 1, with 1 meaning
that all of the available CPU time is being used for system purposes. The utilization
is often expressed as a percentage. If we measure the total execution time of all
processes over an interval of time t , then the CPU utilization is

U �
T

t
. (6.3)

6.1.5 Process State and Scheduling
The first job of the OS is to determine that process runs next.The work of choosing
the order of running processes is known as scheduling.

The OS considers a process to be in one of three basic scheduling states:
waiting, ready, or executing. There is at most one process executing on the
CPU at any time. (If there is no useful work to be done, an idling process may
be used to perform a null operation.) Any process that could execute is in the
ready state; the OS chooses among the ready processes to select the next execut-
ing process. A process may not, however, always be ready to run. For instance, a
process may be waiting for data from an I/O device or another process, or it may
be set to run from a timer that has not yet expired. Such processes are in the wait-
ing state. Figure 6.6 shows the possible transitions between states available to a
process. A process goes into the waiting state when it needs data that it has not
yet received or when it has finished all its work for the current period. A process
goes into the ready state when it receives its required data and when it enters
a new period. A process can go into the executing state only when it has all its
data, is ready to run, and the scheduler selects the process as the next process
to run.

6.1.6 Some Scheduling Policies
A scheduling policy defines how processes are selected for promotion from the
ready state to the running state. Every multitasking OS implements some type of
scheduling policy. Choosing the right scheduling policy not only ensures that the
system will meet all its timing requirements,but it also has a profound influence on
the CPU horsepower required to implement the system’s functionality.

304 CHAPTER 6 Processes and Operating Systems

Executing

Ready

Chosen
to run

Gets data, CPU ready Needs
data

Needs data

Preempted

Received data Waiting

FIGURE 6.6

Scheduling states of a process.

Schedulability means whether there exists a schedule of execution for the
processes in a system that satisfies all their timing requirements. In general,we must
construct a schedule to show schedulability, but in some cases we can eliminate
some sets of processes as unschedulable using some very simple tests. Utilization
is one of the key metrics in evaluating a scheduling policy. Our most basic require-
ment is that CPU utilization be no more than 100% since we can’t use the CPU more
than 100% of the time.

When we evaluate the utilization of the CPU, we generally do so over a finite
period that covers all possible combinations of process executions. For periodic
processes, the length of time that must be considered is the hyperperiod , which
is the least-common multiple of the periods of all the processes. (The complete
schedule for the least-common multiple of the periods is sometimes called the
unrolled schedule.) If we evaluate the hyperperiod,we are sure to have considered
all possible combinations of the periodic processes.The next example evaluates the
utilization of a simple set of processes.

Example 6.1

Utilization of a set of processes
We are given three processes, their execution times, and their periods:

Process Period Execution time

P1 1.0 � 10�3 1.0 � 10�4

P2 1.0 � 10�3 2.0 � 10�4

P3 5.0 � 10�3 3.0 � 10�4

The least common multiple of these periods is 5 � 10�3 s.

6.1 Multiple Tasks and Multiple Processes 305

In order to calculate the utilization, we have to figure out how many times each process is
executed in one hyperperiod: P1 and P2 are each executed five times while P3 is executed
once.

We can now determine the utilization over the hyperperiod:

U �
5.1 � 10�4 � 5.2 � 10�4 � 1.3 � 10�4

5 � 10�3
� 0.36

This is well below our maximum utilization of 1.0.

We will see that some types of timing requirements for a set of processes imply
that we cannot utilize 100% of the CPU’s execution time on useful work, even
ignoring context switching overhead. However, some scheduling policies can
deliver higher CPU utilizations than others, even for the same timing requirements.
The best policy depends on the required timing characteristics of the processes
being scheduled.

One very simple scheduling policy is known as cyclostatic scheduling or some-
times as Time Division Multiple Access scheduling. As illustrated in Figure 6.7,
a cyclostatic schedule is divided into equal-sized time slots over an interval equal
to the length of the hyperperiod H . Processes always run in the same time slot.
Two factors affect utilization: the number of time slots used and the fraction of each
time slot that is used for useful work. Depending on the deadlines for some of the
processes,we may need to leave some time slots empty.And since the time slots are
of equal size,some short processes may have time left over in their time slot.We can
use utilization as a schedulability measure: the total CPU time of all the processes
must be less than the hyperperiod.

Another scheduling policy that is slightly more sophisticated is round robin.As
illustrated in Figure 6.8, round robin uses the same hyperperiod as does cyclostatic.
It also evaluates the processes in order. But unlike cyclostatic scheduling,if a process

P1 P2 P3

H

P1 P2 P3

H

FIGURE 6.7

Cyclostatic scheduling.

H

P3P2P2P1 P3

H

FIGURE 6.8

Round-robin scheduling.

306 CHAPTER 6 Processes and Operating Systems

does not have any useful work to do, the round-robin scheduler moves on to the
next process in order to fill the time slot with useful work. In this example, all
three processes execute during the first hyperperiod, but during the second one,
P1 has no useful work and is skipped. The processes are always evaluated in the
same order.The last time slot in the hyperperiod is left empty;if we have occasional,
non-periodic tasks without deadlines, we can execute them in these empty time
slots. Round-robin scheduling is often used in hardware such as buses because it is
very simple to implement but it provides some amount of flexibility.

In addition to utilization, we must also consider scheduling overhead—the
execution time required to choose the next execution process,which is incurred in
addition to any context switching overhead. In general, the more sophisticated the
scheduling policy,the more CPU time it takes during system operation to implement
it. Moreover, we generally achieve higher theoretical CPU utilization by applying
more complex scheduling policies with higher overheads. The final decision on
a scheduling policy must take into account both theoretical utilization and practical
scheduling overhead.

6.1.7 Running Periodic Processes
We need to find a programming technique that allows us to run periodic processes,
ideally at different rates. For the moment, let’s think of a process as a subroutine;we
will call them p1(), p2(), etc. for simplicity. Our goal is to run these subroutines at
rates determined by the system designer.

Here is a very simple program that runs our process subroutines repeatedly:

while (TRUE) {
p1();
p2();
}

This program has several problems. First, it does not control the rate at which
the processes execute—the loop runs as quickly as possible,starting a new iteration
as soon as the previous iteration has finished. Second, all the processes run at the
same rate.

Before worrying about multiple rates, let’s first make the processes run at a con-
trolled rate. One could imagine controlling the execution rate by carefully designing
the code—by determining the execution time of the instructions executed during
an iteration, we could pad the loop with useless operations (NOPs) to make the
execution time of an iteration equal to the desired period. Although some video
games were designed this way in the 1970s, this technique should be avoided.
Modern processors make it hard to accurately determine execution time,as we saw
in Chapter 5. Conditionals anywhere in the program make it even harder to be
sure that the loop consumes the same amount of execution time on every iteration.
Furthermore, if any part of the program is changed, the entire timing scheme must
be re-evaluated.

6.1 Multiple Tasks and Multiple Processes 307

A timer is a much more reliable way to control execution of the loop. We would
probably use the timer to generate periodic interrupts. Let’s assume for the moment
that the pall() function is called by the timer’s interrupt handler. Then this code
will execute each process once after a timer interrupt:

void pall() {
p1();
p2();
}

But what happens when a process runs too long? The timer’s interrupt will cause
the CPU’s interrupt system to mask its interrupts,so the interrupt will not occur until
after the pall() routine returns. As a result, the next iteration will start late. This is a
serious problem,but we will have to wait for further refinements before we can fix it.

Our next problem is to execute different processes at different rates. If we have
several timers,we can set each timer to a different rate.We could then use a function
to collect all the processes that run at that rate:

void pA() {
/* processes that run at rate A*/
p1();
p3();
}

void pB() {
/* processes that run at rate B */
p2();
p4();
p5();
}

This works, but it does require multiple timers, and we may not have enough
timers to support all the rates required by a system.

An alternative is to use counters to divide the counter rate. If, for example,
process p2() must run at 1/3 the rate of p1(), then we can use this code:

static int p2count = 0; /* use this to remember count across
timer interrupts */

void pall() {
p1();
if (p2count >= 2) { /* execute p2() and reset count */

p2();
p2count = 0;
}

else p2count++; /* just update count in this case */
}

308 CHAPTER 6 Processes and Operating Systems

This solution allows us to execute processes at rates that are simple multiples of
each other. However, when the rates aren’t related by a simple ratio, the counting
process becomes more complex and more likely to contain bugs.

We have developed somewhat more reliable code,but this programming style is
still limited in capability and prone to bugs. To improve both the capabilities and
reliability of our systems, we need to invent the RTOS.

6.2 PREEMPTIVE REAL-TIME OPERATING SYSTEMS
A RTOS executes processes based upon timing constraints provided by the system
designer. The most reliable way to meet timing constraints accurately is to build a
preemptive OS and to use priorities to control what process runs at any given
time. We will use these two concepts to build up a basic RTOS. We will use as our
example OS FreeRTOS.org [Bar07]. This operating system runs on many different
platforms.

6.2.1 Preemption
Preemption is an alternative to the C function call as a way to control execution.To
be able to take full advantage of the timer, we must change our notion of a process
as something more than a function call. We must, in fact, break the assumptions of
our high-level programming language. We will create new routines that allow us to
jump from one subroutine to another at any point in the program. That, together
with the timer,will allow us to move between functions whenever necessary based
upon the system’s timing constraints.

We want to share the CPU across two processes. The kernel is the part of
the OS that determines what process is running. The kernel is activated periodi-
cally by the timer. The length of the timer period is known as the time quantum
because it is the smallest increment in which we can control CPU activity. The
kernel determines what process will run next and causes that process to run. On
the next timer interrupt, the kernel may pick the same process or another process
to run.

Note that this use of the timer is very different from our use of the timer in the
last section. Before, we used the timer to control loop iterations, with one loop

6.2 Preemptive Real-Time Operating Systems 309

iteration including the execution of several complete processes. Here, the time
quantum is in general smaller than the execution time of any of the processes.

How do we switch between processes before the process is done? We cannot
rely on C-level mechanisms to do so. We can, however, use assembly language to
switch between processes. The timer interrupt causes control to change from the
currently executing process to the kernel; assembly language can be used to save
and restore registers.We can similarly use assembly language to restore registers not
from the process that was interrupted by the timer but to use registers from any
process we want. The set of registers that define a process are known as its con-
text and switching from one process’s register set to another is known as context
switching. The data structure that holds the state of the process is known as the
process control block.

6.2.2 Priorities
How does the kernel determine what process will run next? We want a mechanism
that executes quickly so that we don’t spend all our time in the kernel and starve out
the processes that do the useful work. If we assign each task a numerical priority,
then the kernel can simply look at the processes and their priorities,see which ones
actually want to execute (some may be waiting for data or for some event),and select
the highest priority process that is ready to run. This mechanism is both flexible
and fast.The priority is a non-negative integer value.The exact value of the priority
is not as important as the relative priority of different processes. In this book, we
will generally use priority 1 as the highest priority,but it is equally reasonable to use
1 or 0 as the lowest priority value (as FreeRTOS.org does).

Example 6.2 shows how priorities can be used to schedule processes.

Example 6.2

Priority-driven scheduling
For this example, we will adopt the following simple rules:

■ Each process has a fixed priority that does not vary during the course of execution.
(More sophisticated scheduling schemes do, in fact, change the priorities of processes
to control what happens next.)

■ The ready process with the highest priority (with 1 as the highest priority of all) is selected
for execution.

310 CHAPTER 6 Processes and Operating Systems

■ A process continues execution until it completes or it is preempted by a higher-priority
process.

Let’s define a simple system with three processes as seen below.

Process Priority Execution time

P1 1 10
P2 2 30
P3 3 20

In addition to describing the properties of the processes in general, we need to know the
environmental setup. We assume that P2 is ready to run when the system is started, P1 is
released at time 15, and P3 is released at time 18.

Once we know the process properties and the environment,we can use the pri-
orities to determine which process is running throughout the complete execution
of the system.

0 10 20 30 40 50 60

P2 P2P1 P3

P2 release

P1 release

P3 release

When the system begins execution,P2 is the only ready process, so it is selected
for execution. At time 15, P1 becomes ready; it preempts P2 and begins execution
since it has a higher priority. Since P1 is the highest-priority process in the system,
it is guaranteed to execute until it finishes. P3’s data arrive at time 18, but it cannot
preempt P1. Even when P1 finishes, P3 is not allowed to run. P2 is still ready and
has higher priority than P3. Only after both P1 and P2 finish can P3 execute.

6.2.3 Processes and Context
The best way to understand processes and context is to dive into an RTOS imple-
mentation. We will use the FreeRTOS.org kernel as an example; in particular,
we will use version 4.7.0 for the ARM7 AT91 platform. A process is known in
FreeRTOS.org as a task. Task priorities in FreeRTOS.org are ranked opposite to
the convention we use in the rest of the book: higher numbers denote higher
priorities and the priority 0 task is the idle task.

6.2 Preemptive Real-Time Operating Systems 311

timer vPreemptiveTick portSAVE_CONTEXT portRESTORE_CONTEXT vTaskSwitchContext task 1 task 2

FIGURE 6.9

Sequence diagram for freeRTOS.org context switch.

To understand the basics of a context switch, let’s assume that the set of tasks is
in steady state: Everything has been initialized, the OS is running, and we are ready
for a timer interrupt. Figure 6.9 shows a sequence diagram for a context switch in
freeRTOS.org.This diagram shows the application tasks, the hardware timer, and all
the functions in the kernel that are involved in the context switch:

■ vPreemptiveTick() is called when the timer ticks.

■ portSAVE_CONTEXT() swaps out the current task context.

■ vTaskSwitchContext () chooses a new task.

■ portRESTORE_CONTEXT() swaps in the new context.

Here is the code for vPreemptiveTick() in the file portISR.c:

void vPreemptiveTick(void)
{

/* Save the context of the interrupted task. */
portSAVE_CONTEXT();

/* WARNING - Do not use local (stack) variables here.
Use globals if you must! */

static volatile unsigned portLONG ulDummy;

/* Clear tick timer interrupt indication. */
ulDummy = portTIMER_REG_BASE_PTR->TC_SR;
/* Increment the RTOS tick count, then look for the

highest priority task that is ready to run. */
vTaskIncrementTick();
vTaskSwitchContext();

312 CHAPTER 6 Processes and Operating Systems

/* Acknowledge the interrupt at AIC level... */
AT91C_BASE_AIC->AIC_EOICR = portCLEAR_AIC_INTERRUPT;

/* Restore the context of the new task. */
portRESTORE_CONTEXT();

}

vPreemptiveTick() has been declared as a naked function; this means that it
does not use the normal procedure entry and exit code that is generated by the
compiler. Because the function is naked , the registers for the process that was
interrupted are still available; vPreemptiveTick() doesn’t have to go to the proce-
dure call stack to get their values. This is particularly handy since the procedure
mechanism would save only part of the process state, making the state-saving code
a little more complex.

The first thing that this routine must do is save the context of the task that
was interrupted. To do this, it uses the routine portSAVE_CONTEXT(), which saves
all the context of the stack. It then performs some housekeeping, such as incre-
menting the tick count.The tick count is the internal timer that is used to determine
deadlines. After the tick is incremented, some tasks may have become ready as they
passed their deadlines.

Next, the OS determines which task to run next using the routine
vTaskSwitchContext(). After some more housekeeping, it uses port
RESTORE_CONTEXT() to restore the context of the task that was selected by
vTaskSwitchContext(). The action of portRESTORE_CONTEXT() causes control
to transfer to that task without using the standard C return mechanism.

The code for portSAVE_CONTEXT(), in the file portmacro.h, is defined as a
macro and not as a C function. It is structured in this way so that it doesn’t dis-
turb the register values that need to be saved. Because it is a macro, it has to be
written in a hard-to-read way—all code must be on the same line or end-of-line
continuations (back slashes) must be used. Here is the code in more readable form,
with the end-of-line continuations removed and the assembly language that is the
heart of this routine temporarily removed.:

#define portSAVE_CONTEXT()
{
extern volatile void * volatile pxCurrentTCB;
extern volatile unsigned portLONG ulCriticalNesting;

/* Push R0 as we are going to use the register. */
asm volatile(/* assembly language code here */);
(void) ulCriticalNesting;
(void) pxCurrentTCB;

}

The asm statement allows assembly language code to be introduced in-line into
the C program. The keyword volatile tells the compiler that the assembly language

6.2 Preemptive Real-Time Operating Systems 313

may change register values,which means that many compiler optimizations cannot
be performed across the assembly language code. The code uses ulCriticalNesting
and pxCurrentTCB simply to avoid compiler warnings about unused variables—
the variables are actually used in the assembly code, but the compiler cannot
see that.

The asm statement requires that the assembly language be entered as strings,
one string per line, which makes the code hard to read. The fact that the code is
included in a #define makes it even harder to read. Here is a cleaned-up version of
the assembly language code from the asm volatile() statement:

STMDB SP!, {R0}
/* Set R0 to point to the task stack pointer. */
STMDB SP, {SP}^
NOP
SUB SP, SP, #4
LDMIA SP!,{R0}
/* Push the return address onto the stack. */
STMDB R0!, {LR}
/* Now we have saved LR we can use it instead of R0. */
MOV LR, R0
/* Pop R0 so we can save it onto the system mode stack. */
LDMIA SP!, {R0}
/* Push all the system mode registers onto the task

stack. */
STMDB LR,{R0-LR}^
NOP
SUB LR, LR, #60 /*
Push the SPSR onto the task stack. */
MRS R0, SPSR
STMDB LR!, {R0}
LDR R0, =ulCriticalNesting
LDR R0, [R0]
STMDB LR!, {R0}
/*Store the new top of stack for the task. */
LDR R0, =pxCurrentTCB
LDR R0, [R0]
STR LR, [R0]

Here is the code for vTaskSwitchContext(), which is defined in the file tasks.c:

void vTaskSwitchContext(void)
{

if(uxSchedulerSuspended != (unsigned portBASE_TYPE)
pdFALSE)

314 CHAPTER 6 Processes and Operating Systems

{
/* The scheduler is currently suspended - do not

allow a context switch. */
xMissedYield = pdTRUE;

return;
}

/* Find the highest priority queue that contains ready
tasks. */

while(listLIST_IS_EMPTY(&(pxReadyTasksLists[
uxTopReadyPriority])))

{
––uxTopReadyPriority;

}

/* listGET_OWNER_OF_NEXT_ENTRY walks through the list,
so the tasks of the same priority get an equal share
of the processor time. */

listGET_OWNER_OF_NEXT_ENTRY(pxCurrentTCB,
&(pxReadyTasksLists[uxTopReadyPriority]));
vWriteTraceToBuffer();

}

This function is relatively straightforward—it walks down the list of tasks to iden-
tify the highest-priority task. This function is designed to deterministically choose
the next task to run as long as the selected task is of equal or higher priority to
the interrupted task; the list of tasks that is checked is determined by the variable
uxTopReadyPriority. Each list contains the set of processes with the same priority;
once the proper priority has selected by determining the value of uxTopReadyPri-
ority, the system rotates through processes of equal priority by walking down
their list.

The portRESTORE_CONTEXT() routine is also defined in portmacro.h and is
implemented as a macro with embedded assembly language. Here is the macro
with the line continuations and assembly language code removed:

#define portRESTORE_CONTEXT()
{
extern volatile void * volatile
pxCurrentTCB;
extern volatile unsigned portLONG
ulCriticalNesting;

/* Set the LR to the task stack. */
asm volatile (/* assembly language code here */);

6.2 Preemptive Real-Time Operating Systems 315

(void) ulCriticalNesting;
(void) pxCurrentTCB;

}

Here is the assembly language code for portRESTORE_CONTEXT:

LDR R0, =pxCurrentTCB
LDR R0, [R0]
LDR LR, [R0]
/* The critical nesting depth is the first item on the

stack. */
/* Load it into the ulCriticalNesting variable. */
LDR R0, =ulCriticalNesting
LDMFD LR!, {R1}
STR R1, [R0]
/* Get the SPSR from the stack. */
LDMFD LR!, {R0}
MSR SPSR, R0
/* Restore all system mode registers for the task. */
LDMFD LR, {R0-R14}̂
NOP
/* Restore the return address. */
LDR LR, [LR, #+60]
/* And return - correcting the offset in the LR to obtain

the */
/* correct address. */
SUBS PC, LR, #4

6.2.4 Processes and Object-Oriented Design
We need to design systems with processes as components. In this section, we sur-
vey the ways we can describe processes in UML and how to use processes as
components in object-oriented design.

UML often refers to processes as active objects, that is, objects that have inde-
pendent threads of control. The class that defines an active object is known as an
active class. Figure 6.10 shows an example of a UML active class. It has all the
normal characteristics of a class, including a name,attributes,and operations. It also
provides a set of signals that can be used to communicate with the process.A signal
is an object that is passed between processes for asynchronous communication.We
describe signals in more detail in Section 6.2.4.

We can mix active objects and normal objects when describing a system.
Figure 6.11 shows a simple collaboration diagram in which an object is used as
an interface between two processes: p1 uses the w object to manipulate its data
before the data is sent to the master process.

316 CHAPTER 6 Processes and Operating Systems

processClass 1

myAttributes

myOperations()

Signals

start

resume

FIGURE 6.10

An active class in UML.

p1: processClass1

master: masterClass

w: wrapperClass ahat: fullMsg
a: rawMsg

FIGURE 6.11

A collaboration diagram with active and normal objects.

6.3 PRIORITY-BASED SCHEDULING
Now that we have a priority-based context switching mechanism, we have to
determine an algorithm by which to assign priorities to processes. After assign-
ing priorities, the OS takes care of the rest by choosing the highest-priority ready
process. There are two major ways to assign priorities: static priorities that do not
change during execution and dynamic priorities that do change. We will look at
examples of each in this section.

6.3.1 Rate-Monotonic Scheduling
Rate-monotonic scheduling (RMS), introduced by Liu and Layland [Liu73], was
one of the first scheduling policies developed for real-time systems and is still very
widely used. RMS is a static scheduling policy. It turns out that these fixed priorities
are sufficient to efficiently schedule the processes in many situations.

The theory underlying RMS is known as rate-monotonic analysis (RMA).This
theory, as summarized below, uses a relatively simple model of the system.

■ All processes run periodically on a single CPU.

■ Context switching time is ignored.

6.3 Priority-Based Scheduling 317

■ There are no data dependencies between processes.

■ The execution time for a process is constant.

■ All deadlines are at the ends of their periods.

■ The highest-priority ready process is always selected for execution.

The major result of RMA is that a relatively simple scheduling policy is opti-
mal under certain conditions. Priorities are assigned by rank order of period, with
the process with the shortest period being assigned the highest priority. This
fixed-priority scheduling policy is the optimum assignment of static priorities to
processes, in that it provides the highest CPU utilization while ensuring that all
processes meet their deadlines.

Example 6.3 illustrates RMS.

Example 6.3

Rate-monotonic scheduling
Here is a simple set of processes and their characteristics.

Process Execution time Period

P1 1 4
P2 2 6
P3 3 12

Applying the principles of RMA, we give P1 the highest priority, P2 the middle priority,
and P3 the lowest priority. To understand all the interactions between the periods, we need to
construct a time line equal in length to hyperperiod, which is 12 in this case.

0 2 4 6 8 10 12

Time

P1

P2

P3

All three periods start at time zero. P1’s data arrive first. Since P1 is the highest-priority
process, it can start to execute immediately. After one time unit, P1 finishes and goes out
of the ready state until the start of its next period. At time 1, P2 starts executing as the

318 CHAPTER 6 Processes and Operating Systems

highest-priority ready process. At time 3, P2 finishes and P3 starts executing. P1’s next iteration
starts at time 4, at which point it interrupts P3. P3 gets one more time unit of execution between
the second iterations of P1 and P2, but P3 does not get to finish until after the third iteration
of P1.

Consider the following different set of execution times for these processes, keeping the
same deadlines.

Process Execution time Period

P1 2 4
P2 3 6
P3 3 12

In this case, we can show that there is no feasible assignment of priorities that guarantees
scheduling. Even though each process alone has an execution time significantly less than its
period, combinations of processes can require more than 100% of the available CPU cycles.
For example, during one 12 time-unit interval, we must execute P1 three times, requiring
6 units of CPU time; P2 twice, costing 6 units of CPU time; and P3 one time, requiring 3 units
of CPU time. The total of 6 + 6 + 3 = 15 units of CPU time is more than the 12 time units
available, clearly exceeding the available CPU capacity.

Liu and Layland [Liu73] proved that the RMA priority assignment is optimal
using critical-instant analysis. We define the response time of a process as the
time at which the process finishes. The critical instant for a process is defined
as the instant during execution at which the task has the largest response time. It
is easy to prove that the critical instant for any process P, under the RMA model,
occurs when it is ready and all higher-priority processes are also ready—if we
change any higher-priority process to waiting, then P’s response time can only go
down.

We can use critical-instant analysis to determine whether there is any feasible
schedule for the system. In the case of the second set of execution times in
Example 6.3,there was no feasible schedule. Critical-instant analysis also implies that
priorities should be assigned in order of periods. Let the periods and computation
times of two processes P1 and P2 be �1, �2 and T1, T2, with �1 < �2. We can
generalize the result of Example 6.3 to show the total CPU requirements for the
two processes in two cases. In the first case, let P1 have the higher priority. In the
worst case we then execute P2 once during its period and as many iterations of P1
as fit in the same interval. Since there are ��2/�1� iterations of P1 during a single
period of P2, the required constraint on CPU time, ignoring context switching
overhead, is

⌊
�2

�1

⌋
T1 � T2 � �2. (6.4)

6.3 Priority-Based Scheduling 319

If, on the other hand, we give higher priority to P2, then critical-instant analysis
tells us that we must execute all of P2 and all of P1 in one of P1’s periods in the
worst case:

T1 � T2 � �1. (6.5)

There are cases where the first relationship can be satisfied and the second
cannot, but there are no cases where the second relationship can be satisfied and
the first cannot. We can inductively show that the process with the shorter period
should always be given higher priority for process sets of arbitrary size. It is also
possible to prove that RMS always provides a feasible schedule if such a schedule
exists.

The bad news is that,although RMS is the optimal static-priority schedule,it does
not always allow the system to use 100% of the available CPU cycles. In the RMS
framework, the total CPU utilization for a set of n tasks is

U �

n∑
i�1

Ti

�i
. (6.6)

The fraction Ti/�i is the fraction of time that the CPU spends executing task i.
It is possible to show that for a set of two tasks under RMS scheduling, the CPU
utilization U will be no greater than 2(21/2 � 1) ∼� 0.83. In other words, the CPU
will be idle at least 17% of the time. This idle time is due to the fact that priorities
are assigned statically; we see in the next section that more aggressive scheduling
policies can improve CPU utilization. When there are m tasks with fixed priorities,
the maximum processor utilization is

U � m(21/m � 1). (6.7)

As m approaches infinity, the least upper bound to CPU utilization is ln 2 �
0.69—the CPU will be idle 31% of the time. This does not mean that we can never
use 100% of the CPU. If the periods of the tasks are arranged properly, then we can
schedule tasks to make use of 100% of the CPU. But the least upper bound of 69%
tells us that RMS can in some cases deliver utilizations significantly below 100%.

The implementation of RMS is very simple. Figure 6.12 shows C code for an
RMS scheduler run at the OS’s timer interrupt. The code merely scans through the
list of processes in priority order and selects the highest-priority ready process
to run. Because the priorities are static, the processes can be sorted by priority
in advance before the system starts executing. As a result, this scheduler has an
asymptotic complexity of O(n), where n is the number of processes in the system.
(This code assumes that processes are not created dynamically. If dynamic process
creation is required, the array can be replaced by a linked list of processes, but
the asymptotic complexity remains the same.) The RMS scheduler has both low
asymptotic complexity and low actual execution time, which helps minimize the
discrepancies between the zero-context-switch assumption of RMA and the actual
execution of an RMS system.

320 CHAPTER 6 Processes and Operating Systems

/* processes[] is an array of process activation records,
 stored in order of priority, with processes[0] being
 the highest-priority process */
Activation_record processes[NPROCESSES];

void RMA(int current) { /* current � currently executing
process */
 int i;
 /* turn off current process (may be turned back on) */
 processes[current].state � READY_STATE;
 /* find process to start executing */
 for (i � 0; i < NPROCESSES; i��)
 if (processes[i].state �� READY_STATE) {

 /* make this the running process */
 processes[i].state �� EXECUTING_STATE;
 break;
 }
}

FIGURE 6.12

C code for rate-monotonic scheduling.

6.3.2 Earliest-Deadline-First Scheduling
Earliest deadline first (EDF) is another well-known scheduling policy that was
also studied by Liu and Layland [Liu73]. It is a dynamic priority scheme—it changes
process priorities during execution based on initiation times. As a result, it can
achieve higher CPU utilizations than RMS.

The EDF policy is also very simple: It assigns priorities in order of deadline. The
highest-priority process is the one whose deadline is nearest in time,and the lowest-
priority process is the one whose deadline is farthest away. Clearly, priorities must
be recalculated at every completion of a process. However, the final step of the OS
during the scheduling procedure is the same as for RMS—the highest-priority ready
process is chosen for execution.

Example 6.4 illustrates EDF scheduling in practice.

Example 6.4

Earliest-deadline-first scheduling
Consider the following processes:

Process Execution time Period

P1 1 3

P2 1 4

P3 2 5

The hyperperiod is 60. In order to be able to see the entire period, we write it as a table:

6.3 Priority-Based Scheduling 321

Time Running process Deadlines

0 P1
1 P2
2 P3 P1
3 P3 P2
4 P1 P3
5 P2 P1
6 P1
7 P3 P2
8 P3 P1
9 P1 P3

10 P2
11 P3 P1, P2
12 P1
13 P3
14 P2 P1, P3
15 P1 P2
16 P2
17 P3 P1
18 P1
19 P3 P2, P3
20 P2 P1
21 P1
22 P3
23 P3 P1, P2
24 P1 P3
25 P2
26 P3 P1
27 P1 P2
28 P3
29 P2 P1, P3
30 idle
31 P1 P2
32 P3 P1
33 P3
34 P1 P3
35 P2 P1, P2
36 P1
37 P2
38 P3 P1
39 P3 P2, P3
40 P1

(Continued)

322 CHAPTER 6 Processes and Operating Systems

Time Running process Deadlines

41 P2 P1
42 P1
43 P3 P2
44 P3 P1, P3
45 P1
46 P2
47 P3 P1, P2
48 P3
49 P1 P3
50 P2 P1
51 P1 P2
52 P3
53 P3 P1
54 P2 P3
55 P1 P2
56 P2 P1
57 P1
58 P3
59 P3 P1, P2, P3

There is one time slot left at t � 30, giving a CPU utilization of 59/60.

Liu and Layland showed that EDF can achieve 100% utilization. A feasible sched-
ule exists if the CPU utilization (calculated in the same way as for RMA) is �1.They
also showed that when an EDF system is overloaded and misses a deadline, it will
run at 100% capacity for a time before the deadline is missed.

The implementation of EDF is more complex than the RMS code. Figure 6.13
outlines one way to implement EDF. The major problem is keeping the processes
sorted by time to deadline—since the times to deadlines for the processes change
during execution, we cannot presort the processes into an array, as we could for
RMS. To avoid resorting the entire set of records at every change, we can build a
binary tree to keep the sorted records and incrementally update the sort.At the end
of each period,we can move the record to its new place in the sorted list by deleting
it from the tree and then adding it back to the tree using standard tree manipulation
techniques. We must update process priorities by traversing them in sorted order,
so the incremental sorting routines must also update the linked list pointers that let
us traverse the records in deadline order. (The linked list lets us avoid traversing the
tree to go from one node to another,which would require more time.) After putting
in the effort to building the sorted list of records, selecting the next executing
process is done in a manner similar to that of RMS. However, the dynamic sorting
adds complexity to the entire scheduling process. Each update of the sorted list

6.3 Priority-Based Scheduling 323

Deadline_tree

Activation_record

Data structure

Code

Activation_record

......

/* linked list, sorted by deadline */

Activation_record *processes;

/* data structure for sorting processes */

Deadline_tree *deadlines;

void expired_deadline(Activation_record *expired){

 remove(expired); /* remove from the deadline-sorted list */

 add(expired,expired->deadline); /* add at new deadline */

}

Void EDF(int current) { /* current � currently executing process */

 int i;

 /* turn off current process (may be turned back on) */

 processes->state � READY_STATE;

 /* find process to start executing */

 for (alink = processes; alink !� NULL; alink � alink->next_deadline)

 if (processes->state �� READY_STATE) {

 /* make this the running process */

 processes->state �� EXECUTING_STATE;

 break;

 }

 }

FIGURE 6.13

C code for earliest-deadline-first scheduling.

requires O(log n) steps. The EDF code is also significantly more complex than the
RMS code.

6.3.3 RMS vs. EDF
Which scheduling policy is better: RMS or EDF? That depends on your criteria. EDF
can extract higher utilization out of the CPU,but it may be difficult to diagnose the
possibility of an imminent overload. Because the scheduler does take some overhead
to make scheduling decisions,a factor that is ignored in the schedulability analysis of
both EDF and RMS, running a scheduler at very high utilizations is somewhat prob-
lematic. RMS achieves lower CPU utilization but is easier to ensure that all deadlines

324 CHAPTER 6 Processes and Operating Systems

will be satisfied. In some applications, it may be acceptable for some processes to
occasionally miss deadlines. For example, a set-top box for video decoding is not
a safety-critical application, and the occasional display artifacts caused by missing
deadlines may be acceptable in some markets.

What if your set of processes is unschedulable and you need to guarantee that
they complete their deadlines? There are several possible ways to solve this problem:

■ Get a faster CPU. That will reduce execution times without changing the
periods, giving you lower utilization. This will require you to redesign the
hardware, but this is often feasible because you are rarely using the fastest
CPU available.

■ Redesign the processes to take less execution time. This requires knowledge
of the code and may or may not be possible.

■ Rewrite the specification to change the deadlines. This is unlikely to be
feasible,but may be in a few cases where some of the deadlines were initially
made tighter than necessary.

6.3.4 A Closer Look at Our Modeling Assumptions
Our analyses of RMS and EDF have made some strong assumptions. These assump-
tions have made the analyses much more tractable, but the predictions of analysis
may not hold up in practice. Since a misprediction may cause a system to miss
a critical deadline, it is important to at least understand the consequences of these
assumptions.

In all of the above discussions,we have assumed that each process is totally self-
contained. However, that is not always the case—for instance, a process may need
a system resource,such as an I/O device or the bus,to complete its work. Scheduling
the processes without considering the resources those processes require can cause
priority inversion, in which a low-priority process blocks execution of a higher-
priority process by keeping hold of its resource. Example 6.5 illustrates priority
inversion.

Example 6.5

Priority inversion
Consider a system with two processes: the higher-priority P1 and the lower-priority P2. Each
uses the microprocessor bus to communicate to peripherals. When P2 executes, it requests
the bus from the operating system and receives it. If P1 becomes ready while P2 is using the
bus, the OS will preempt P2 for P1, leaving P2 with control of the bus. When P1 requests the
bus, it will be denied the bus, since P2 already owns it. Unless P1 has a way to take the bus
from P2, the two processes may deadlock.

The most common method for dealing with priority inversion is to promote the
priority of any process when it requests a resource from the OS.The priority of the
process temporarily becomes higher than that of any other process that may use

6.4 Interprocess Communication Mechanisms 325

the resource. This ensures that the process will continue executing once it has the
resource so that it can finish its work with the resource, return it to the OS, and
allow other processes to use it. Once the process is finished with the resource, its
priority is demoted to its normal value. Several methods have been developed to
manage the priority swapping process [Liu00].

Rate-monotonic scheduling assumes that there are no data dependencies
between processes. Example 6.6 shows that knowledge of data dependencies can
help use the CPU more efficiently.

Example 6.6

Data dependencies and scheduling
Data dependencies imply that certain combinations of processes can never occur. Consider
the simple example [Yen98] below.

P2

P1 P3

1 2 1

2

10

8

Task graph

Task

Task rates

Deadline

P1

P2

2

1

P3 4

Process

Execution times

CPU time

We know that P1 and P2 cannot execute at the same time, since P1 must finish before
P2 can begin. Furthermore, we also know that because P3 has a higher priority, it will not
preempt both P1 and P2 in a single iteration. If P3 preempts P1, then P3 will complete before
P2 begins; if P3 preempts P2, then it will not interfere with P1 in that iteration. Because we
know that some combinations of processes cannot be ready at the same time, we know that
our worst-case CPU requirements are less than would be required if all processes could be
ready simultaneously.

6.4 INTERPROCESS COMMUNICATION MECHANISMS
Processes often need to communicate with each other. Interprocess communi-
cation mechanisms are provided by the operating system as part of the process
abstraction.

326 CHAPTER 6 Processes and Operating Systems

CPU

Write

Bus

I/O device

Read

Shared
location

Memory

FIGURE 6.14

Shared memory communication implemented on a bus.

In general, a process can send a communication in one of two ways: blocking
or nonblocking. After sending a blocking communication, the process goes into
the waiting state until it receives a response. Nonblocking communication allows
the process to continue execution after sending the communication. Both types of
communication are useful.

There are two major styles of interprocess communication: shared memory
and message passing.The two are logically equivalent—given one,you can build
an interface that implements the other. However, some programs may be easier to
write using one rather than the other. In addition, the hardware platform may make
one easier to implement or more efficient than the other.

6.4.1 Shared Memory Communication
Figure 6.14 illustrates how shared memory communication works in a bus-based
system. Two components, such as a CPU and an I/O device, communicate through
a shared memory location. The software on the CPU has been designed to know
the address of the shared location;the shared location has also been loaded into the
proper register of the I/O device. If, as in the figure, the CPU wants to send data to
the device, it writes to the shared location.The I/O device then reads the data from
that location. The read and write operations are standard and can be encapsulated
in a procedural interface.

Example 6.7 describes the use of shared memory as a practical communication
mechanism.

Example 6.7

Elastic buffers as shared memory
The text compressor of Application Example 3.4 provides a good example of a shared memory.
As shown below, the text compressor uses the CPU to compress incoming text, which is then
sent on a serial line by a UART.

6.4 Interprocess Communication Mechanisms 327

UART

Size info

CPUIn

UART

Out
Buffer

Memory

The input data arrive at a constant rate and are easy to manage. But because the output
data are consumed at a variable rate, these data require an elastic buffer. The CPU and output
UART share a memory area—the CPU writes compressed characters into the buffer and the
UART removes them as necessary to fill the serial line. Because the number of bits in the
buffer changes constantly, the compression and transmission processes need additional size
information. In this case, coordination is simple—the CPU writes at one end of the buffer and
the UART reads at the other end. The only challenge is to make sure that the UART does not
overrun the buffer.

As an application of shared memory,let us consider the situation of Figure 6.14 in
which the CPU and the I/O device want to communicate through a shared memory
block. There must be a flag that tells the CPU when the data from the I/O device
is ready. The flag, an additional shared data location, has a value of 0 when the data
are not ready and 1 when the data are ready.The CPU, for example,would write the
data, and then set the flag location to 1. If the flag is used only by the CPU, then the
flag can be implemented using a standard memory write operation. If the same flag
is used for bidirectional signaling between the CPU and the I/O device, care must
be taken. Consider the following scenario:

1. CPU reads the flag location and sees that it is 0.

2. I/O device reads the flag location and sees that it is 0.

3. CPU sets the flag location to 1 and writes data to the shared location.

4. I/O device erroneously sets the flag to 1 and overwrites the data left by
the CPU.

The above scenario is caused by a critical timing race between the two programs.
To avoid such problems, the microprocessor bus must support an atomic test-and-
set operation, which is available on a number of microprocessors. The test-and-set
operation first reads a location and then sets it to a specified value. It returns the
result of the test. If the location was already set, then the additional set has no effect
but the test-and-set instruction returns a false result. If the location was not set, the

328 CHAPTER 6 Processes and Operating Systems

instruction returns true and the location is in fact set. The bus supports this as an
atomic operation that cannot be interrupted. Programming Example 6.1 describes
a test-and-set operation in more detail.

A test-and-set can be used to implement a semaphore,which is a language-level
synchronization construct. For the moment, let’s assume that the system provides
one semaphore that is used to guard access to a block of protected memory. Any
process that wants to access the memory must use the semaphore to ensure that no
other process is actively using it.As shown below,the semaphore names by tradition
are P() to gain access to the protected memory and V() to release it.

/* some nonprotected operations here */
P(); /* wait for semaphore */
/* do protected work here */
V(); /* release semaphore */

The P() operation uses a test-and-set to repeatedly test a location that holds
a lock on the memory block. The P() operation does not exit until the lock is
available; once it is available, the test-and-set automatically sets the lock. Once past
the P() operation, the process can work on the protected memory block. The V()
operation resets the lock, allowing other processes access to the region by using
the P() function.

Programming Example 6.1

Test-and-set operation
The SWP (swap) instruction is used in the ARM to implement atomic test-and-set:

SWP Rd,Rm,Rn

The SWP instruction takes three operands—the memory location pointed to by Rn is loaded
and saved into Rd , and the value of Rm is then written into the location pointed to by Rn.
When Rd and Rn are the same register, the instruction swaps the register’s value and the value
stored at the address pointed to by Rd/Rn. For example, consider this code sequence:

ADR r0, SEMAPHORE ; get semaphore address
LDR r1, #1
GETFLAG SWP r1,r1,[r0] ; test-and-set the flag
BNZ GETFLAG ; no flag yet, try again
HASFLAG ...

The program first loads the constant 1 into r1 and the address of the semaphore FLAG1 into
register r2, then reads the semaphore into r0 and writes the 1 value into the semaphore. The
code then tests whether the semaphore fetched from memory is zero; if it was, the semaphore
was not busy and we can enter the critical region that begins with the HASFLAG label. If the
flag was nonzero, we loop back to try to get the flag once again.

6.4 Interprocess Communication Mechanisms 329

msg msg

CPU 1 CPU 2

FIGURE 6.15

Message passing communication.

6.4.2 Message Passing
Message passing communication complements the shared memory model.As shown
in Figure 6.15, each communicating entity has its own message send/receive unit.
The message is not stored on the communications link, but rather at the senders/
receivers at the end points. In contrast,shared memory communication can be seen
as a memory block used as a communication device, in which all the data are stored
in the communication link/memory.

Applications in which units operate relatively autonomously are natural can-
didates for message passing communication. For example, a home control sys-
tem has one microcontroller per household device—lamp, thermostat, faucet,
appliance, and so on. The devices must communicate relatively infrequently; fur-
thermore, their physical separation is large enough that we would not naturally
think of them as sharing a central pool of memory. Passing communication pack-
ets among the devices is a natural way to describe coordination between these
devices. Message passing is the natural implementation of communication in many
8-bit microcontrollers that do not normally operate with external memory.

6.4.3 Signals
Another form of interprocess communication commonly used in Unix is the signal .
A signal is simple because it does not pass data beyond the existence of the signal
itself. A signal is analogous to an interrupt, but it is entirely a software creation.
A signal is generated by a process and transmitted to another process by the
operating system.

A UML signal is actually a generalization of the Unix signal. While a Unix signal
carries no parameters other than a condition code,a UML signal is an object.As such,
it can carry parameters as object attributes. Figure 6.16 shows the use of a signal
in UML. The sigbehavior() behavior of the class is responsible for throwing the
signal,as indicated by ��send ��.The signal object is indicated by the ��signal ��
stereotype.

330 CHAPTER 6 Processes and Operating Systems

<<signal>>
aSig

p: integer

someClass

sigbehavior()
<<send>>

FIGURE 6.16

Use of a UML signal.

6.5 EVALUATING OPERATING SYSTEM PERFORMANCE
The scheduling policy does not tell us all that we would like to know about the
performance of a real system running processes. Our analysis of scheduling policies
makes some simplifying assumptions:

■ We have assumed that context switches require zero time.Although it is often
reasonable to neglect context switch time when it is much smaller than the
process execution time, context switching can add significant delay in some
cases.

■ We have assumed that we know the execution time of the processes. In fact,
we learned in Section 5.6 that program time is not a single number, but can
be bounded by worst-case and best-case execution times.

■ We probably determined worst-case or best-case times for the processes in
isolation. But,in fact,they interact with each other in the cache. Cache conflicts
among processes can drastically degrade process execution time.

The zero-time context switch assumption used in the analysis of RMS is not
correct—we must execute instructions to save and restore context, and we must
execute additional instructions to implement the scheduling policy. On the other
hand, context switching can be implemented efficiently—context switching need
not kill performance. The effects of nonzero context switching time must be care-
fully analyzed in the context of a particular implementation to be sure that the
predictions of an ideal scheduling policy are sufficiently accurate.

Example 6.8 shows that context switching can, in fact, cause a system to miss a
deadline.

Example 6.8

Scheduling and context switching overhead
Appearing below is a set of processes and their characteristics.

6.5 Evaluating Operating System Performance 331

Process Execution time Deadline

P1 3 5
P2 3 10

First, let us try to find a schedule assuming that context switching time is zero. Following
is a feasible schedule for a sequence of data arrivals that meets all the deadlines:

0 2

P1

P1 P2 P1

P2

4 6 8 10
Time

Now let us assume that the total time to initiate a process, including context switching
and scheduling policy evaluation, is one time unit. It is easy to see that there is no feasible
schedule for the above release time sequence, since we require a total of 2TP1 � TP2 �

2 � (1 � 3) � (1 � 3) � 11 time units to execute one period of P2 and two periods of P1.

In Example 6.8,overhead was a large fraction of the process execution time and
of the periods. In most real-time operating systems, a context switch requires only
a few hundred instructions, with only slightly more overhead for a simple real-time
scheduler like RMS.When the overhead time is very small relative to the task periods,
then the zero-time context switch assumption is often a reasonable approximation.
Problems are most likely to manifest themselves in the highest-rate processes,which
are often the most critical in any case. Completely checking that all deadlines will be
met with nonzero context switching time requires checking all possible schedules
for processes and including the context switch time at each preemption or process
initiation. However, assuming an average number of context switches per process
and computing CPU utilization can provide at least an estimate of how close the
system is to CPU capacity.

Another important assumption we have made thus far is that process execution
time is constant. As seen in Section 5.6, this is definitely not the case—both data-
dependent behavior and caching effects can cause large variations in run times. If
we can determine worst-case execution time, then shorter run times for a process
simply mean unused CPU time. If we cannot accurately bound WCET, then we will
be left with a very conservative estimate of execution time that will leave even more
CPU time unused.

332 CHAPTER 6 Processes and Operating Systems

We also assumed that processes don’t interact,but the cache causes the execution
of one program to influence the execution time of other programs.The techniques
for bounding the cache-based performance of a single program do not work when
multiple programs are in the same cache. Many real-time systems have been designed
based on the assumption that there is no cache present, even though one actually
exists. This grossly conservative assumption is made because the system architects
lack tools that permit them to analyze the effect of caching. Since they do not know
where caching will cause problems, they are forced to retreat to the simplifying
assumption that there is no cache. The result is extremely overdesigned hardware,
which has much more computational power than is necessary. However, just as
experience tells us that a well-designed cache provides significant performance
benefits for a single program,a properly sized cache can allow a microprocessor to
run a set of processes much more quickly. By analyzing the effects of the cache,we
can make much better use of the available hardware.

Li and Wolf [Li99] developed a model for estimating the performance of multiple
processes sharing a cache. In the model, some processes can be given reservations
in the cache, such that only a particular process can inhabit a reserved section of
the cache; other processes are left to share the cache. We generally want to use
cache partitions only for performance-critical processes since cache reservations
are wasteful of limited cache space. Performance is estimated by constructing a
schedule, taking into account not just execution time of the processes but also
the state of the cache. Each process in the shared section of the cache is modeled
by a binary variable: 1 if present in the cache and 0 if not. Each process is also
characterized by three total execution times: assuming no caching, with typical
caching, and with all code always resident in the cache. The always-resident time is
unrealistically optimistic, but it can be used to find a lower bound on the required
schedule time. During construction of the schedule, we can look at the current
cache state to see whether the no-cache or typical-caching execution time should
be used at this point in the schedule.We can also update the cache state if the cache
is needed for another process.Although this model is simple,it provides much more
realistic performance estimates than assuming the cache either is nonexistent or is
perfect. Example 6.9 shows how cache management can improve CPU utilization.

Example 6.9

Effects of scheduling on the cache
Consider a system containing the following three processes:

Process Worst-case CPU time Average-case CPU time

P1 8 6
P2 4 3
P3 4 3

6.6 Power Management and Optimization for Processes 333

Each process uses half the cache, so only two processes can be in the cache at the same
time.

Appearing below is a first schedule that uses a least-recently-used cache replacement
policy on a process-by-process basis.

P1

P1 P1, P2 P2, P3 P1, P3 P2, P1 P3, P2Cache

P2

P3

In the first iteration, we must fill up the cache, but even in subsequent iterations, compe-
tition among all three processes ensures that a process is never in the cache when it starts to
execute. As a result, we must always use the worst-case execution time.

Another schedule in which we have reserved half the cache for P1 is shown below. This
leaves P2 and P3 to fight over the other half of the cache.

P1

P1 P1, P2 P1, P3 P1, P3 P1, P2 P1, P3Cache

P2

P3

In this case, P2 and P3 still compete, but P1 is always ready. After the first iteration, we
can use the average-case execution time for P1, which gives us some spare CPU time that
could be used for additional operations.

6.6 POWER MANAGEMENT AND OPTIMIZATION
FOR PROCESSES

We learned in Section 3.6 about the features that CPUs provide to manage power
consumption. The RTOS and system architecture can use static and dynamic
power management mechanisms to help manage the system’s power consumption.
A power management policy [Ben00] is a strategy for determining when to

334 CHAPTER 6 Processes and Operating Systems

perform certain power management operations. A power management policy in
general examines the state of the system to determine when to take actions.
However, the overall strategy embodied in the policy should be designed based
on the characteristics of the static and dynamic power management mechanisms.

Going into a low-power mode takes time; generally, the more that is shut off,
the longer the delay incurred during restart. Because power-down and power-up
are not free, modes should be changed carefully. Determining when to switch
into and out of a power-up mode requires an analysis of the overall system
activity.

■ Avoiding a power-down mode can cost unnecessary power.

■ Powering down too soon can cause severe performance penalties.

Re-entering run mode typically costs a considerable amount of time.
A straightforward method is to power up the system when a request is received.

This works as long as the delay in handling the request is acceptable. A more
sophisticated technique is predictive shutdown. The goal is to predict when
the next request will be made and to start the system just before that time, sav-
ing the requestor the start-up time. In general, predictive shutdown techniques
are probabilistic—they make guesses about activity patterns based on a proba-
bilistic model of expected behavior. Because they rely on statistics, they may not
always correctly guess the time of the next activity. This can cause two types of
problems:

■ The requestor may have to wait for an activity period. In the worst case,
the requestor may not make a deadline due to the delay incurred by system
start-up.

■ The system may restart itself when no activity is imminent. As a result, the
system will waste power.

Clearly,the choice of a good probabilistic model of service requests is important.
The policy mechanism should also not be too complex,since the power it consumes
to make decisions is part of the total system power budget.

Several predictive techniques are possible. A very simple technique is to use
fixed times. For instance, if the system does not receive inputs during an interval
of length Ton, it shuts down; a powered-down system waits for a period Toff before
returning to the power-on mode.The choice of Toff and Ton must be determined by
experimentation. Srivastava and Eustace [Sri94] found one useful rule for graphics
terminals. They plotted the observed idle time (Toff) of a graphics terminal versus
the immediately preceding active time (Ton).The result was an L-shaped distribution
as illustrated in Figure 6.17. In this distribution, the idle period after a long active
period is usually very short, and the length of the idle period after a short active
period is uniformly distributed. Based on this distribution, they proposed a shut
down threshold that depended on the length of the last active period—they shut

6.6 Power Management and Optimization for Processes 335

Toff

Ton

Shutdown interval varies widely

Shutdown interval is short

FIGURE 6.17

An L-shaped usage distribution.

down when the active period length was below a threshold, putting the system in
the vertical portion of the L distribution.

The Advanced Configuration and Power Interface (ACPI) is an open indus-
try standard for power management services. It is designed to be compatible with
a wide variety of OSs. It was targeted initially to PCs.The role of ACPI in the system
is illustrated in Figure 6.18. ACPI provides some basic power management facilities
and abstracts the hardware layer, the OS has its own power management module
that determines the policy,and the OS then uses ACPI to send the required controls
to the hardware and to observe the hardware’s state as input to the power manager.

ACPI supports the following five basic global power states:

■ G3, the mechanical off state, in which the system consumes no power.

■ G2, the soft off state, which requires a full OS reboot to restore the machine
to working condition. This state has four substates:

—S1, a low wake-up latency state with no loss of system context;

—S2, a low wake-up latency state with a loss of CPU and system cache state;

—S3, a low wake-up latency state in which all system state except for main
memory is lost; and

—S4, the lowest-power sleeping state, in which all devices are turned off.

■ G1, the sleeping state, in which the system appears to be off and the time
required to return to working condition is inversely proportional to power
consumption.

336 CHAPTER 6 Processes and Operating Systems

Applications

Hardware platform

Device
drivers

Kernel

ACPI driver
AML interpreter

ACPI

ACPI BIOS

Power
management

ACPI tables ACPI registers

FIGURE 6.18

The advanced configuration and power interface and its relationship to a complete system.

■ G0, the working state, in which the system is fully usable.

■ The legacy state, in which the system does not comply with ACPI.

The power manager typically includes an observer, which receives messages
through the ACPI interface that describe the system behavior. It also includes
a decision module that determines power management actions based on those
observations.

Design Example 6.7 TELEPHONE ANSWERING MACHINE
In this section we design a digital telephone answering machine. The system will
store messages in digital form rather than on an analog tape. To make life more
interesting, we use a simple algorithm to compress the voice data so that we can
make more efficient use of the limited amount of available memory.

6.7.1 Theory of Operation and Requirements
In addition to studying the compression algorithm, we also need to learn a little
about the operation of telephone systems.

The compression scheme we will use is known as adaptive differential pulse
code modulation (ADPCM). Despite the long name, the technique is relatively
simple but can yield 2 � compression ratios on voice data.

6.7 Design Example: Telephone Answering Machine 337

Time

Time

Analog signal

 ADPCM stream 3 2 1 21 22 23

FIGURE 6.19

The ADPCM coding scheme.

The ADPCM coding scheme is illustrated in Figure 6.19. Unlike traditional sam-
pling, in which each sample shows the magnitude of the signal at a particular time,
ADPCM encodes changes in the signal. The samples are expressed in a coding
alphabet ,whose values are in a relative range that spans both negative and positive
values. In this case, the value range is {�3, �2, �1, 1, 2, 3}. Each sample is used to
predict the value of the signal at the current instant from the previous value.At each
point in time, the sample is chosen such that the error between the predicted value
and the actual signal value is minimized.

An ADPCM compression system, including an encoder and decoder, is shown in
Figure 6.20. The encoder is more complex, but both the encoder and decoder use
an integrator to reconstruct the waveform from the samples. The integrator simply
computes a running sum of the history of the samples; because the samples are
differential, integration reconstructs the original signal. The encoder compares the
incoming waveform to the predicted waveform (the waveform that will be gen-
erated in the decoder). The quantizer encodes this difference as the best predic-
tor of the next waveform value. The inverse quantizer allows us to map bit-level
symbols onto real numerical values; for example, the eight possible codes in
a 3-bit code can be mapped onto floating-point numbers. The decoder simply
uses an inverse quantizer and integrator to turn the differential samples into the
waveform.

The answering machine will ultimately be connected to a telephone subscriber
line (although for testing purposes we will construct a simulated line).At the other
end of the subscriber line is the central office. All information is carried on the
phone line in analog form over a pair of wires. In addition to analog/digital and
digital/analog converters to send and receive voice data, we need to sense two
other characteristics of the line.

338 CHAPTER 6 Processes and Operating Systems

Quantizer

Integrator

Integrator
Inverse
quantizer

Encoder

Decoder

2

Samples

Inverse
quantizer

FIGURE 6.20

An ADPCM compression system.

■ Ringing: The central office sends a ringing signal to the telephone when a
call is waiting.The ringing signal is in fact a 90V RMS sinusoid,but we can use
analog circuitry to produce 0 for no ringing and 1 for ringing.

■ Off-hook: The telephone industry term for answering a call is going off-
hook; the technical term for hanging up is going on-hook. (This creates
some initial confusion since off-hook means the telephone is active and
on-hook means it is not in use, but the terminology starts to make sense
after a few uses.) Our interface will send a digital signal to take the
phone line off-hook, which will cause analog circuitry to make the nec-
essary connection so that voice data can be sent and received during
the call.

We can now write the requirements for the answering machine. We will assume
that the interface is not to the actual phone line but to some circuitry that provides
voice samples, off-hook commands, and so on. Such circuitry will let us test
our system with a telephone line simulator and then build the analog circuitry
necessary to connect to a real phone line.We will use the term outgoing message
(OGM) to refer to the message recorded by the owner of the machine and played
at the start of every phone call.

6.7 Design Example: Telephone Answering Machine 339

Name Digital telephone answering machine

Purpose Telephone answering machine with digital memory,
using speech compression.

Inputs Telephone: voice samples, ring indicator.
User interface: microphone, play messages button,
record OGM button.

Outputs Telephone: voice samples, on-hook/off-hook com-
mand. User interface: speaker, # messages indicator,
message light.

Functions Default mode: When machine receives ring indicator,
it signals off-hook, plays the OGM, and then records
the incoming message. Maximum recording length for
incoming message is 30 s, at which time the machine
hangs up. If the machine runs out of memory, the
OGM is played and the machine then hangs up with-
out recording.
Playback mode: When the play button is depressed,
the machine plays all messages. If the play button is
depressed again within five seconds, the messages are
played again. Messages are erased after playback.
OGM editing mode: When the user hits the record
OGM button, the machine records an OGM of up to
10 s. When the user holds down the record OGM but-
ton and hits the play button, the OGM is played back.

Performance Should be able to record about 30 min of total voice,
including incoming and OGMs.Voice data are sampled
at the standard telephone rate of 8 kHz.

Manufacturing cost Consumer product range: approximately $50.
Power Powered by AC through a standard power supply.
Physical size and weight Comparable in size and weight to a desk telephone.

We have made a few arbitrary decisions about the user interface in these require-
ments. The amount of voice data that can be saved by the machine should in fact
be determined by two factors: the price per unit of DRAM at the time at which the
device goes into manufacturing (since the cost will almost certainly drop from the
start of design to manufacture) and the projected retail price at which the machine
must sell. The protocol when the memory is full is also arbitrary—it would make
at least as much sense to throw out old messages and replace them with new ones,
and ideally the user could select which protocol to use. Extra features such as an
indicator showing the number of messages or a save messages feature would also
be nice to have in a real consumer product.

340 CHAPTER 6 Processes and Operating Systems

6.7.2 Specification
Figure 6.21 shows the class diagram for the answering machine. In addition to
the classes that perform the major functions, we also use classes to describe the
incoming and OGMs. As seen below, these classes are related.

The definitions of the physical interface classes are shown in Figure 6.22. The
buttons and lights simply provide attributes for their input and output values. The
phone line, microphone, and speaker are given behaviors that let us sample their
current values.

The message classes are defined in Figure 6.23. Since incoming and OGM types
share many characteristics,we derive both from a more fundamental message type.

The major operational classes—Controls, Record, and Playback—are defined
in Figure 6.24. The Controls class provides an operate() behavior that oversees
the user-level operations. The Record and Playback classes provide behaviors that
handle writing and reading sample sequences.

The state diagram for the Controls activate behavior is shown in Figure 6.25.
Most of the user activities are relatively straightforward. The most complex is an-
swering an incoming call. As with the software modem of Section 5.11,we want to
be sure that a single depression of a button causes the required action to be taken
exactly once; this requires edge detection on the button signal.

State diagrams for record-msg and playback-msg are shown in Figure 6.26. We
have parameterized the specification for record-msg so that it can be used either
from the phone line or from the microphone. This requires parameterizing the
source itself and the termination condition.

Microphone*

Line-in*

Speaker*

Controls

Lights*

Record

Playback

Outgoing-message

Incoming-message
Line-out*

Buttons* 1

1

1

1

1

1

1

1

1 1

11 1

1 1

1
1

1

*
*

*

*

FIGURE 6.21

Class diagram for the answering machine.

6.7 Design Example: Telephone Answering Machine 341

Microphone*

sample()

Line-in*

sample()
ring-indicator()

Line-out*

sample()
pick-up()

Speaker*

sample()

Buttons*

record-OGM
play

Lights*

messages
num-messages

FIGURE 6.22

Physical class interfaces for the answering machine.

Incoming-message

msg-time

Message

Outgoing-message

length 5 30 seconds

length
start-adrs
next-msg
samples

FIGURE 6.23

The message classes for the answering machine.

Controls

operate()

Playback

playback-msg()

Record

record-msg()

FIGURE 6.24

Operational classes for the answering machine.

342 CHAPTER 6 Processes and Operating Systems

Start

Compute button, line activations

Activations?

Play OGM

Play OGM

Play OGM

Record OGM

Record ICM

Play ICM

Play ICM

Wait for time-out

Record OGM Erase

Erase
messages

Erase
messages

Incoming

Allocate ICM

Answer line

End

Time-out

Play
activation

FIGURE 6.25

State diagram for the controls activate behavior.

6.7.3 System Architecture
The machine consists of two major subsystems from the user’s point of view: the
user interface and the telephone interface. The user and telephone interfaces both
appear internally as I/O devices on the CPU bus with the main memory serving as
the storage for the messages.

The software splits into the following seven major pieces:

■ The front panel module handles the buttons and lights.

■ The speaker module handles sending data to the user’s speaker.

■ The telephone line module handles off-hook detection and on-hook
commands.

■ The telephone input and output modules handle receiving samples from
and sending samples to the telephone line.

6.7 Design Example: Telephone Answering Machine 343

End

Start

End

Start

tm(voiceperiod)

playback-msgrecord-msg

nextadrs 5 msg.length

speaker.sample()5
msg.samples[nextadrs]
nextadrs11

end(source)

tm(voiceperiod)

F F

T T

msg.samples[nextadrs] 5
sample(source)

nextadrs 5 0nextadrs 5 0

FIGURE 6.26

State diagrams for the record-msg and playback-msg behaviors.

■ The compression module compresses data and stores it in memory.

■ The decompression module uncompresses data and sends it to the speaker
module.

We can determine the execution model for these modules based on the rates at
which they must work and the ways in which they communicate.

■ The front panel and telephone line modules must regularly test the buttons
and phone line, but this can be done at a fairly low rate. As seen below, they
can therefore run as polled processes in the software’s main loop.

while (TRUE) {
check_phone_line();
run_front_panel();

}

■ The speaker and phone input and output modules must run at higher, regular
rates and are natural candidates for interrupt processing.These modules don’t
run all the time and so can be disabled by the front panel and telephone line
modules when they are not needed.

344 CHAPTER 6 Processes and Operating Systems

■ The compression and decompression modules run at the same rate as the
speaker and telephone I/O modules, but they are not directly connected to
devices. We will therefore call them as subroutines to the interrupt modules.

One subtlety is that we must construct a very simple file system for messages,
since we have a variable number of messages of variable lengths. Since messages
vary in length, we must record the length of each one. In this simple specifica-
tion, because we always play back the messages in the order in which they were
recorded, we don’t have to keep a full-fledged directory. If we allowed users to
selectively delete messages and save others, we would have to build some sort of
directory structure for the messages.

The hardware architecture is straightforward and illustrated in Figure 6.27. The
speaker and telephone I/O devices appear as standard A/D and D/A converters.
The telephone line appears as a one-bit input device (ring detect) and a one-
bit output device (off-hook/on-hook). The compressed data are kept in main
memory.

6.7.4 Component Design and Testing
Performance analysis is important in this case because we want to ensure that
we don’t spend so much time compressing that we miss voice samples. In a real
consumer product, we would carefully design the code so that we could use the
slowest, cheapest possible CPU that would still perform the required processing in
the available time between samples. In this case,we will choose the microprocessor
in advance for simplicity and simply ensure that all the deadlines are met.

An important class of problems that should be adequately tested is memory
overflow.The system can run out of memory at any time,not just between messages.
The modules should be tested to ensure that they do reasonable things when all
the available memory is used up.

Front panel

A/D

D/A

A/D

D/A

CPU Memory

Mic

Speaker

Telephone line

FIGURE 6.27

The hardware structure of the answering machine.

Summary 345

6.7.5 System Integration and Testing
We can test partial integrations of the software on our host platform. Final testing
with real voice data must wait until the application is moved to the target platform.

Testing your system by connecting it directly to the phone line is not a very
good idea. In the United States, the Federal Communications Commission regulates
equipment connected to phone lines. Beyond legal problems,a bad circuit can dam-
age the phone line and incur the wrath of your service provider.The required analog
circuitry also requires some amount of tuning, and you need a second telephone
line to generate phone calls for tests. You can build a telephone line simulator to
test the hardware independently of a real telephone line. The phone line simulator
consists of A/D and D/A converters plus a speaker and microphone for voice data,
an LED for off-hook/on-hook indication, and a button for ring generation. The tele-
phone line interface can easily be adapted to connect to these components,and for
purposes of testing the answering machine the simulator behaves identically to the
real phone line.

SUMMARY
The process abstraction is forced on us by the need to satisfy complex timing
requirements,particularly for multirate systems.Writing a single program that simul-
taneously satisfies deadlines at multiple rates is too difficult because the control
structure of the program becomes unintelligible.The process encapsulates the state
of a computation, allowing us to easily switch among different computations.

The operating system encapsulates the complex control to coordinate the pro-
cess. The scheme used to determine the transfer of control among processes is
known as a scheduling policy. A good scheduling policy is useful across many dif-
ferent applications while also providing efficient utilization of the available CPU
cycles.

It is difficult,however, to achieve 100% utilization of the CPU for complex appli-
cations. Because of variations in data arrivals and computation times, reserving
some cycles to meet worst-case conditions is often necessary. Some schedul-
ing policies achieve higher utilizations than others, but often at the cost of
unpredictability—they may not guarantee that all deadlines are met. Knowledge of
the characteristics of an application can be used to increase CPU utilization while
also complying with deadlines.

What We Learned

■ A process is a single thread of execution.

■ Pre-emption is the act of changing the CPU’s execution from one process to
another.

■ A scheduling policy is a set of rules that determines the process to run.

346 CHAPTER 6 Processes and Operating Systems

■ Rate-monotonic scheduling (RMS) is a simple but powerful scheduling
policy.

■ Interprocess communication mechanisms allow data to be passed reliably
between processes.

■ Scheduling analysis often ignores certain real-world effects. Cache interactions
between processes are the most important effects to consider when designing
a system.

FURTHER READING
Gallmeister [Gal95] provides a thorough and very readable introduction to POSIX
in general and its real-time aspects in particular. Liu and Layland [Liu73] introduce
rate-monotonic scheduling; this paper became the foundation for real-time systems
analysis and design. The book by Liu [Liu00] provides a detailed analysis of real-
time scheduling. Benini et al. [Ben00] provide a good survey of system-level power
management techniques. Falik and Intrater [Fal92] describe a custom chip designed
to perform answering machine operations.

QUESTIONS
Q6-1 Identify activities that operate at different rates in

a. a PDA;

b. a laser printer; and

c. an airplane.

Q6-2 Name an embedded system that requires both periodic and aperiodic
computation.

Q6-3 An audio system processes samples at a rate of 44.1 kHz. At what rate
could we sample the system’s front panel to both simplify analysis of the
system schedule and provide adequate response to the user’s front panel
requests?

Q6-4 Draw a UML class diagram for a process in an operating system.The process
class should include the necessary attributes and behaviors required of a
typical process.

Q6-5 What factors provide a lower bound on the period at which the system timer
interrupts for preemptive context switching?

Q6-6 What factors provide an upper bound on the period at which the system
timer interrupts for preemptive context switching?

Questions 347

Q6-7 You are given these periodic tasks:

Task Period Execution time

P1 5 ms 2 ms
P2 10 ms 3 ms
P3 10 ms 3 ms
P4 15 ms 6 ms

Compute the utilization of this set of tasks.

Q6-8 You are given these periodic tasks:

Task Period Execution time

P1 5 ms 1 ms
P2 10 ms 2 ms
P3 10 ms 2 ms
P4 15 ms 3 ms

a. Show a cyclostatic schedule for the tasks.

b. Compute the CPU utilization for the system.

Q6-9 For the task set of question Q6-8, show a round robin schedule assuming
that P1 does not execute during its first period and P3 does not execute
during its second period.

Q6-10 What is the distinction between the ready and waiting states of process
scheduling?

Q6-11 Provide examples of

a. blocking interprocess communication, and

b. nonblocking interprocess communication.

Q6-12 Assuming that you have a routine called swap(int *a,int *b) that atomically
swaps the values of the memory locations pointed to a and b, write C
code for:

a. P(); and

b. V().

Q6-13 Draw UML sequence diagrams of two versions of P(): one that incorrectly
uses a nonatomic operation to test and set the semaphore location and
another that correctly uses an atomic test-and-set.

348 CHAPTER 6 Processes and Operating Systems

Q6-14 For the following periodic processes, what is the shortest interval we must
examine to see all combinations of deadlines?

a.
Process Deadline

P1 3
P2 5
P3 15

b.
Process Deadline

P1 2
P2 3
P3 6
P4 10

c.
Process Deadline

P1 3
P2 4
P3 5
P4 6
P5 10

Q6-15 Consider the following system of periodic processes executing on a
single CPU:

Process CPU time Deadline

P1 4 200
P2 1 10
P3 2 40
P4 6 50

Can we add another instance of P1 to the system and still meet all the
deadlines using RMS?

Q6-16 Given the following set of periodic processes running on a single CPU,what
is the maximum execution time for P5 for which all the processes will be
schedulable using RMS?

Questions 349

Process CPU time Deadline

P1 1 10
P2 18 100
P3 2 20
P4 5 50
P5 x 25

Q6-17 A set of periodic processes is scheduled using RMS. For the process execu-
tion times and periods shown below,show the state of the processes at the
critical instant for each of these processes.

a. P1

b. P2

c. P3

Process CPU time Deadline

P1 1 4
P2 2 5
P3 1 20

Q6-18 For the given periodic process execution times and periods, show how
much CPU time of higher-priority processes will be required during one
period of each of the following processes:

a. P1

b. P2

c. P3

d. P4

Process CPU time Deadline

P1 1 5
P2 2 10
P3 3 25
P4 4 50

Q6-19 For the periodic processes shown below:

a. Schedule the processes using an RMS policy.

b. Schedule the processes using an EDF policy.

In each case, compute the schedule for the hyperperiod of the processes.
Time starts at t � 0.

350 CHAPTER 6 Processes and Operating Systems

Process CPU time Deadline

P1 1 3
P2 1 4
P3 1 12

Q6-20 For the periodic processes shown below:

a. Schedule the processes using an RMS policy.

b. Schedule the processes using an EDF policy.

In each case,compute the schedule for an interval equal to the hyperperiod
of the processes. Time starts at t � 0.

Process CPU time Deadline

P1 1 3
P2 1 4
P3 2 8

Q6-21 For the given set of periodic processes,all of which share the same deadline
of 12:

a. Schedule the processes for the given arrival times using standard rate-
monotonic scheduling (no data dependencies).

b. Schedule the processes taking advantage of the data dependencies. By
how much is the CPU utilization reduced?

P3P2

P1

Process CPU time

P1 2
P2 1
P3 2

Questions 351

Q6-22 For the periodic processes given below, find a valid schedule

a. using standard RMS, and

b. adding one unit of overhead for each context switch.

Process CPU time Deadline

P1 2 30
P2 4 40
P3 7 120
P4 5 60
P5 1 15

Q6-23 For the periodic processes and deadlines given below:

a. Schedule the processes using RMS.

b. Schedule using EDF and compare the number of context switches
required for EDF and RMS.

Process CPU time Deadline

P1 1 5
P2 1 10
P3 2 20
P4 9 50
P5 7 100

Q6-24 In each circumstance below, would shared memory or message passing
communication be better? Explain.

a. A cascaded set of digital filters.

b. A digital video decoder and a process that overlays user menus on the
display.

c. A software modem process and a printing process in a fax machine.

Q6-25 If you wanted to reduce the cache conflicts between the most computa-
tionally intensive parts of two processes,what are two ways that you could
control the locations of the processes’ cache footprints?

Q6-26 Draw a state diagram for the predictive shutdown mechanism of a cell
phone. The cell phone wakes itself up once every five minutes for 0.01
second to listen for its address. It goes back to sleep if it does not hear its
address or after it has received its message.

Q6-27 How would you use theADPCM method to encode an unvarying (DC) signal
with the coding alphabet {�3, �2, �1, 1, 2, 3}?

352 CHAPTER 6 Processes and Operating Systems

LAB EXERCISES
L6-1 Using your favorite operating system, write code to spawn a process that

writes “Hello, world” to the screen or flashes an LED, depending on your
available output devices.

L6-2 Build a small serial port device that lights LEDs based on the last character
written to the serial port. Create a process that will light LEDs based on
keyboard input.

L6-3 Write a driver for an I/O device.

L6-4 Write context switch code for your favorite CPU.

L6-5 Measure context switching overhead on an operating system.

L6-6 Using a CPU that runs an operating system that uses RMS, try to get the CPU
utilization up to 100%. Vary the data arrival times to test the robustness of the
system.

L6-7 Using a CPU that runs an operating system that uses EDF, try to get the CPU
utilization as close to 100% as possible without failing. Try a variety of data
arrival times to determine how sensitive your process set is to environmental
variations.

CHAPTER

7Multiprocessors
■ Why we design and use multiprocessors.

■ Accelerators and hardware/software co-design.

■ Performance analysis.

■ Architectural templates.

■ Architecture design: scheduling and allocation.

■ Multiprocessor performance analysis.

■ A video accelerator design.

INTRODUCTION
Multiprocessing—using computers that have more than one processor—has a long
history in embedded computing. A surprising number of embedded systems are
built on multiprocessor platforms. In fact, many of the least expensive embedded
systems are built on sophisticated multiprocessors. Battery-powered devices that
must deliver high performance at very low energy rates generally rely on multipro-
cessor platforms;this description fits a large part of the consumer electronics space.

The next section discusses why multiprocessors make sense for embedded sys-
tems. Section 7.2 introduces accelerators,a particular type of unit used in embedded
multiprocessor systems and surveys the design process for accelerated and multi-
processors systems. Section 7.3 considers performance analysis of accelerators and
multiprocessors. The next five sections discuss examples of real-world embedded
multiprocessors in consumer electronics: Section 7.4 discusses some general prop-
erties of the architecture of consumer electronics devices;Section 7.5 describes cell
phones; Section 7.6 discusses CD players; Section 7.7 describes audio players; and
Section 7.8 describes digital still cameras. Section 7.9 designs a video accelerator as
an example of an accelerated embedded system.

7.1 WHY MULTIPROCESSORS?
Programming a single CPU is hard enough. Why make life more difficult by adding
more processors? A multiprocessor is, in general, any computer system with

353

354 CHAPTER 7 Multiprocessors

two or more processors coupled together. Multiprocessors used for scientific or
business applications tend to have regular architectures: several identical proces-
sors that can access a uniform memory space. We use the term processing
element (PE) to mean any unit responsible for computation, whether it is
programmable or not.

Embedded system designers must take a more general view of the nature of
multiprocessors. As we will see, embedded computing systems are built on top of
an astonishing array of different multiprocessor architectures.

Why is there no single multiprocessor architecture for all types of embedded
computing applications? And why do we need embedded multiprocessors at all?
The reasons for multiprocessors are the same reasons that drive all of embedded
system design: real-time performance, power consumption, and cost.

The first reason for using an embedded multiprocessor is that they offer signif-
icantly better cost/performance—that is, performance and functionality per dollar
spent on the system—than would be had by spending the same amount of money on
a uniprocessor system.The basic reason for this is that processing element purchase
price is a nonlinear function of performance [Wol08]. The cost of a microproces-
sor increases greatly as the clock speed increases. We would expect this trend as
a normal consequence of VLSI fabrication and market economics. Clock speeds
are normally distributed by normal variations in VLSI processes;because the fastest
chips are rare, they naturally command a high price in the marketplace.

Because the fastest processors are very costly, splitting the application so that
it can be performed on several smaller processors is usually much cheaper. Even
with the added costs of assembling those components, the total system comes out
to be less expensive. Of course, splitting the application across multiple processors
does entail higher engineering costs and lead times, which must be factored into
the project.

In addition to reducing costs, using multiple processors can also help with real-
time performance. We can often meet deadlines and be responsive to interaction
much more easily when we put those time-critical processes on separate proces-
sors. Given that scheduling multiple processes on a single CPU incurs overhead in
most realistic scheduling models,as discussed in Chapter 6,putting the time-critical
processes on PEs that have little or no time-sharing reduces scheduling overhead.
Because we pay for that overhead at the nonlinear rate for the processor, as illus-
trated in Figure 7.1,the savings by segregating time-critical processes can be large—it
may take an extremely large and powerful CPU to provide the same responsiveness
that can be had from a distributed system.

Many of the technology trends that encourage us to use multiprocessors for
performance also lead us to multiprocessing for low power embedded computing.
Several processors running at slower clock rates consume less power than a single
large processor: performance scales linearly with power supply voltage but power
scales with V2.

Austin et al. [Aus04] showed that general-purpose computing platforms are
not keeping up with the strict energy budgets of battery-powered embedded

7.1 Why Multiprocessors? 355

Required application
performance

Application performance 1
scheduling overhead

Cost
($, Euro, etc.)

Performance

FIGURE 7.1

Scheduling overhead is paid for at a nonlinear rate.

i3
86

i4
86

75 mW Peak
Power

Power Gap

Pentiu
m

 Pro

Pentiu
m

Pentiu
m

 ll

Pentiu
m

 lll

Pentiu
m

 4

One G
en

Two G
en

Thre
e G

en

Dynamic Power (W)
Static Power (W)

Total Power (W)
000

100

10

1

0.1

FIGURE 7.2

Power consumption trends for desktop processors [Aus04]. © 2004 IEEE Computer Society.

computing. Figure 7.2 compares the performance of power requirements of desktop
processors with available battery power. Batteries can provide only about 75 mW
of power. Desktop processors require close to 1000 times that amount of power to
run. That huge gap cannot be solved by tweaking processor architectures or soft-
ware. Multiprocessors provide a way to break through this power barrier and build
substantially more efficient embedded computing platforms.

356 CHAPTER 7 Multiprocessors

7.2 CPUs AND ACCELERATORS
One important category of PE for embedded multiprocessor is the accelerator .
An accelerator is attached to CPU buses to quickly execute certain key functions.
Accelerators can provide large performance increases for applications with com-
putational kernels that spend a great deal of time in a small section of code.
Accelerators can also provide critical speedups for low-latency I/O functions.

The design of accelerated systems is one example of hardware/software
co-design—the simultaneous design of hardware and software to meet system
objectives. Thus far, we have taken the computing platform as a given; by adding
accelerators, we can customize the embedded platform to better meet our
application’s demands.

As illustrated in Figure 7.3, a CPU accelerator is attached to the CPU bus. The
CPU is often called the host . The CPU talks to the accelerator through data and
control registers in the accelerator. These registers allow the CPU to monitor the
accelerator’s operation and to give the accelerator commands.

The CPU and accelerator may also communicate via shared memory. If the accel-
erator needs to operate on a large volume of data, it is usually more efficient to leave
the data in memory and have the accelerator read and write memory directly rather
than to have the CPU shuttle data from memory to accelerator registers and back.
The CPU and accelerator use synchronization mechanisms like those described in
Section 6.5 to ensure that they do not destroy each other’s data.

Memory

CPU

Accelerator

Accelerator

D
at

a
re

gi
st

er
s

C
o

n
tr

o
l r

eg
is

te
rs

Accelerator
logic

CPU bus

FIGURE 7.3

CPU accelerators in a system.

7.2 CPUs and Accelerators 357

An accelerator is not a co-processor.A co-processor is connected to the internals
of the CPU and processes instructions as defined by opcodes. An accelerator inter-
acts with the CPU through the programming model interface; it does not execute
instructions. Its interface is functionally equivalent to an I/O device, although it
usually does not perform input or output.

Both CPUs and accelerators perform computations required by the specification;
at some level we do not care whether the work is done on a programmable CPU or
on a hardwired unit.

The first task in designing an accelerator is determining that our system actually
needs one. We have to make sure that the function we want to accelerate will run
more quickly on our accelerator than it will by executing as software on a CPU. If our
system CPU is a small microcontroller, the race may be easily won, but competing
against a high-performance CPU is a challenge. We also have to make sure that the
accelerated function will speed up the system. If some other operation is in fact the
bottleneck,or if moving data into and out of the accelerator is too slow,then adding
the accelerator may not be a net gain.

Once we have analyzed the system, we need to design the accelerator itself. In
order to have identified our need for an accelerator, we must have a good under-
standing of the algorithm to be accelerated,which is often in the form of a high-level
language program. We must translate the algorithm description into a hardware
design, a considerable task in itself. We must also design the interface between the
accelerator core and the CPU bus. The interface includes more than bus handshak-
ing logic. For example, we have to determine how the application software on the
CPU will communicate with the accelerator and provide the required registers; we
may have to implement shared memory synchronization operations; and we may
have to add address generation logic to read and write large amounts of data from
system memory.

Finally, we will have to design the CPU-side interface to the accelerator. The
application software will have to talk to the accelerator,providing it data and telling
it what to do.We have to somehow synchronize the operation of the accelerator with
the rest of the application so that the accelerator knows when it has the required
data and the CPU knows when it has received the desired results.

7.2.1 System Architecture Framework
The complete architectural design of the accelerated system depends on the appli-
cation being implemented. However, it is helpful to think of an architectural
framework into which our accelerator fits. Because the same basic techniques for
connecting the CPU and accelerator can be applied to many different problems,
understanding the framework helps us quickly identify what is unique about our
application.

An accelerator can be considered from two angles: its core functionality and its
interface to the CPU bus. We often start with the accelerator’s basic functionality
and work our way out to the bus interface, but in some cases the bus interface and

358 CHAPTER 7 Multiprocessors

the internal logic are closely intertwined in order to provide high-performance data
access.

The accelerator core typically operates off internal registers. How many registers
are required is an important design decision. Main memory accesses will probably
take multiple clock cycles, slowing down the accelerator. If the algorithm to be
accelerated can predict which data values it will use, the data can be prefetched
from main memory and stored in internal registers.

The accelerator will almost certainly use registers for basic control. Status regis-
ters like those of I/O devices are a good way for the CPU to test the accelerator’s
state and to perform basic operations such as starting, stopping, and resetting the
accelerator.

Large-volume data transfers may be performed by special-purpose read/write
logic. Figure 7.4 illustrates an accelerator with read/write units that can supply
higher volumes of data without CPU intervention. A register file in the accelerator
acts as a buffer between main memory and the accelerator core. The read unit can
read ahead of the accelerator’s requirements and load the registers with the next
required data; similarly, the write unit can send recently completed values to main
memory while the core works with other values. In order to avoid tying up the
CPU, the data transfers can be performed in DMA mode, which means that the
accelerator must have the required logic to become a bus master and perform DMA
operations.

B
u

s
in

te
rf

ac
e

Core

CPU

Accelerator

DMA

Memory

R
eg

is
te

rs

Write
unit

Read
unit

FIGURE 7.4

Read/write units in an accelerator.

7.2 CPUs and Accelerators 359

CPU

3

Cache

Accelerator

Memory
1

2

S

FIGURE 7.5

A cache updating problem in an accelerated system.

The CPU cache can cause problems for accelerators. Consider the following
sequence of operations as illustrated in Figure 7.5:

1. The CPU reads location S.

2. The accelerator writes S.

3. The CPU again reads S.

If the CPU has cached location S, the program will not see the value of S written
by the accelerator. It will instead get the old value of S stored in the cache.To avoid
this problem, the CPU’s cache must be updated to reflect the fact that this cache
entry is invalid.Your CPU may provide cache invalidation instructions;you can also
remove the location from the cache by reading another location that is mapped to
the same cache line (or, in the case of set-associative caches,enough such locations
to replace all the cache sets). Some CPUs are designed to support multiprocessing.
The bus interface of such machines provides mechanisms for other processors to tell
the CPU of required cache changes.This mechanism can be used by the accelerator
to update the cache.

If the CPU and accelerator operate concurrently and communicate via shared
memory, it is possible that similar problems will occur in main memory, not just in
the cache. If one PE reads a value and then updates it, the other PE may change the
value,causing the first PE’s update to be invalid. In some cases, it may be possible to
use a very simple synchronization scheme for communication: the CPU writes data
into a memory buffer, starts the accelerator, waits for the accelerator to finish, and
then reads the shared memory area. This amounts to using the accelerator’s status
registers as a simple semaphore system. If the CPU and accelerator both want access
to the same block of memory at the same time, then the accelerator will need to
implement a test-and-set operation in order to implement semaphores. Many CPU

360 CHAPTER 7 Multiprocessors

buses implement test-and-set atomic operations that the accelerator can use for the
semaphore operation.

7.2.2 System Integration and Debugging
Design of an accelerated system requires both designing your own components and
interfacing them to a hardware platform. It is usually a good policy to separately
debug the basic interface between the accelerator and the rest of the system before
integrating the full accelerator into the platform.

Hardware/software co-simulation can be very useful in accelerator design.
Because the co-simulator allows you to run software relatively efficiently along-
side a hardware simulation,it allows you to exercise the accelerator in a realistic but
simulated environment. It is especially difficult to exercise the interface between
the accelerator core and the host CPU without running the CPU’s accelerator driver.
It is much better to do so in a simulator before fabricating the accelerator, rather
than to have to modify the hardware prototype of the accelerator.

7.3 MULTIPROCESSOR PERFORMANCE ANALYSIS
Analyzing the performance of a system with multiple processors is not easy.We saw
a glimpse of some of the difficulties in Section 4.7 when we studied the performance
of a simple system with a CPU, an I/O device, and a bus. That basic uniprocessor
architecture still shows some opportunity for parallelism. In this section we will
consider multiprocessor performance in more detail. We will start by analyzing
accelerators, then move on to more general instances of multiprocessors.

7.3.1 Accelerators and Speedup
The most basic question that we can ask about our accelerator is speedup: how
much faster is the system with the accelerator than the system without it? We may,
of course, be concerned with other metrics such as power consumption and man-
ufacturing cost. However, if the accelerator does not provide an attractive speedup,
questions of cost and power will be moot.

The speedup factor depends in part on whether the system is single threaded
or multithreaded , that is, whether the CPU sits idle while the accelerator runs
in the single-threaded case or the CPU can do useful work in parallel with the
accelerator in the multithreaded case. Another equivalent description is blocking
vs. nonblocking. Does the CPU’s scheduler block other operations and wait for
the accelerator call to complete, or does the CPU allow some other process to
run in parallel with the accelerator? The possibilities are shown in Figure 7.6. Data
dependencies allow P2 and P3 to run independently on the CPU, but P2 relies on
the results of the A1 process that is implemented by the accelerator. However, in
the single-threaded case, the CPU blocks to wait for the accelerator to return the
results of its computation.As a result, it does not matter whether P2 or P3 runs next
on the CPU. In the multithreaded case, the CPU continues to do useful work while

7.3 Multiprocessor Performance Analysis 361

CPU

Execution time

Accelerator A1

P1 P2 P3 P4

Single threaded

Time

CPU

Execution time

Accelerator A1

P1 P3 P2 P4

Multithreaded

Time

P1

P2
A1 A1

P3

P4

Flow of control

CPU

Accelerator

P1

P2

P3

P4

Flow of control

CPU

Accelerator

Split

Join

FIGURE 7.6

Single-threaded versus multithreaded control of an accelerator.

the accelerator runs, so the CPU can start P3 just after starting the accelerator and
finish the task earlier.

The first task is to analyze the performance of the accelerator. As illustrated in
Figure 7.7, the execution time for the accelerator depends on more than just the
time required to execute the accelerator’s function. It also depends on the time
required to get the data into the accelerator and back out of it. Since the CPU’s
registers are probably not addressable by the accelerator, the data probably reside
in main memory.

A simple accelerator will read all its input data,perform the required computation,
and then write all its results. In this case, the total execution time may be written as

taccel � tin � tx � tout (7.1)

where tx is the execution time of the accelerator assuming all data are available,and
tin and tout are the times required for reading and writing the required variables,
respectively. The values for tin and tout must reflect the time required for the bus
transactions, including the following factors:

■ the time required to flush any register or cache values to main memory,if those
values are needed in main memory to communicate with the accelerator;and

■ the time required for transfer of control between the CPU and accelerator.

362 CHAPTER 7 Multiprocessors

Memory

CPU

w 5 a * b 2 c * d;
x 5 e * f;
...

Inputs

Accelerator

Outputs

FIGURE 7.7

Components of execution time for an accelerator.

Transferring data into and out of the accelerator may require the accelerator
to become a bus master. Since the CPU may delay bus mastership requests, some
worst-case value for bus mastership acquisition must be determined based on the
CPU characteristics.

A more sophisticated accelerator could try to overlap input and output with
computation. For example, it could read a few variables and start computing on
those values while reading other values in parallel. In this case,the tin and tout terms
would represent the nonoverlapped read/write times rather than the complete input
and output times. One important example of overlapped I/O and computation is
streaming data applications such as digital filtering. As illustrated in Figure 7.8, an
accelerator may take in one or more streams of data and output a stream. Latency
requirements generally require that outputs be produced on the fly rather than
storing up all the data and then computing; furthermore, it may be impractical to
store long streams at all. In this case, the tin and tout terms are determined by the
amount of data read in before starting computation and the length of time between
the last computation and the last data output. We discussed the performance of
bus-based systems with overlapped communication and computation in Section 4.7.

We are most interested in the speedup obtained by replacing the software
implementation with the accelerator.The total speedup S for a kernel can be written
as [Hen94]:

S � n(tCPU � taccel)

� n[tCPU � (tin � tx � tout)] (7.2)

where tCPU is the execution time of the equivalent function in software on the CPU
and n is the number of times the function will be executed. We can use the tech-
niques of Chapter 5 to determine the value of tCPU. Clearly, the more times the
function is evaluated, the more valuable the speedup provided by the accelerator
becomes.

7.3 Multiprocessor Performance Analysis 363

Inputs

Outputs

Accelerator

a[t 21]

out[t21]

out[t]

b[t 21]

a[t]

b[t]

out[i]5a[i] * b[i];

FIGURE 7.8

Streaming data in and out of an accelerator.

Ultimately,we don’t care so much about the accelerator’s speedup as the speedup
for the complete system—that is, how much faster the entire application com-
pletes execution. In a single-threaded system, the evaluation of the accelerator’s
speedup to the total system speedup is simple: The system execution time is
reduced by S. The reason is illustrated in Figure 7.9—the single thread of control
gives us a single path whose length we can measure to determine the new execution
speed.

Evaluating system speedup in a multithreaded environment requires more sub-
tlety. As shown in Figure 7.10, there is now more than one execution path. The
total system execution time depends on the longest path from the beginning of
execution to the end of execution. In this case, the system execution time depends
on the relative speeds of P3 and P2 plus A1. If P2 and A1 together take the most
time,P3 will not play a role in determining system execution time. If P3 takes longer,
then P2 and A1 will not be a factor. To determine system execution time, we must
label each node in the graph with its execution time.

In simple cases we can enumerate the paths, measure the length of each, and
select the longest one as the system execution time. Efficient graph algorithms can
also be used to compute the longest path.

This analysis shows the importance of selecting the proper functions to be moved
to the accelerator. Clearly, if the function selected for speedup isn’t a big portion
of system execution time, taking the number of times it is executed into account,
you won’t see much system speedup. We also learned from Equation 7.1 that if too

364 CHAPTER 7 Multiprocessors

P1

P2

P3

P4

Flow of control

SA1

FIGURE 7.9

Evaluating system speedup in a single-threaded implementation.

Flow of control

P2

A1

P3

P4

P1

FIGURE 7.10

Evaluating system speedup in a multithreaded implementation.

much overhead is incurred getting data into and out of the accelerator, we won’t
see much speedup.

7.3.2 Performance Effects of Scheduling and Allocation
When we design a multiprocessor system, we must allocate tasks to PEs; we must
also schedule both the computations on the PEs and schedule the communication
between the processes on the buses in the system.The next example considers the
interaction between scheduling and allocation in a two-processor system.

7.3 Multiprocessor Performance Analysis 365

Example 7.1

Performance effects of scheduling and allocation
We want to execute a simple task graph:

P1 P2

P3

We want to execute it on a platform that has two processors connected by a bus:

M1 M2

One obvious way to allocate the tasks to the processors would be by precedence: put P1 and
P2 onto M1; put the task that receives their outputs, namely P3, onto M2. When we look at
the schedule for this system, we see that M2 sits idle for quite some time:

Time

M1

M2

P1 P2

P3

P1C P2C

In this timing graph, P1C is the time required to communicate P1’s output to P3 and P2C is
the communication time for P2 to P3. M2 sits idle as P3 waits for its inputs.

366 CHAPTER 7 Multiprocessors

Let’s change the allocation so that P1 runs on M1 while P2 and P3 run on M2. This gives
us a new schedule:

Time

M1

M2

P1

P3P2

P1C

Eliminating P2C gives us some benefit, but the biggest benefit comes from the fact that P1
and P2 run concurrently.

If we can change the code for our tasks, then we can extract even more oppor-
tunities for parallelism. The next example looks at how to split computations into
smaller pieces to expose more parallelism opportunities.

Example 7.2

Overlapping computation and communication
In some cases, we can redesign our computations to increase the available parallelism.
Assume we want to implement the following task graph:

P1

d1 d2

P3

P2

Assume also that we want to implement the task graph on this network:

M1 M2 M3

We will allocate P1 to M1, P2 to M2, and P3 to M3. P1 and P2 run for three time units while
P3 runs for four time units. A complete transmission of either d1 or d2 takes four time units.

7.3 Multiprocessor Performance Analysis 367

The task graph shows that P3 cannot start until it receives its data from both P1 and P2 over
the bus network.

P3

d1d2 d1d2 d1 d2d1d2

P3 P3 P3

P2

M3

M2

M1

Time

P1

0

Network

5 10 15 20

The simplest implementation transmits all the required data in one large message, which is
four packets long in this case. Appearing below is a schedule based on that message structure.

d1 d2

P3

P2

M3

M2

M1

Time

P1

0

Network

5 10 15 20

P3 does not start until time 11, when the transmission of the second message has been
completed. The total schedule length is 15.

Let’s redesign P3 so that it does not require all of both messages to begin. We modify the
program so that it reads one packet of data each from d1 and d2 and start computing on
that. If it finishes what it can do on that data before the next packets from d1 and d2 arrive,
it waits; otherwise, it picks up the packets and keeps computing. This organization allows us
to take advantage of concurrency between the M3 processing element (PE) and the network
as shown by the schedule below.

Reorganizing the messages so that they can be sent concurrently with P3’s execution
reduces the schedule length from 15 to 12, even with P3 stopping to wait for more data from
P1 and P2.

368 CHAPTER 7 Multiprocessors

7.3.3 Buffering and Performance
Moving data in a multiprocessor can incur significant and sometimes unpredictable
costs. When we move data in a uniprocessor, we are copying from one part of
memory to another, we are doing so within the same memory system. When we
move data in a multiprocessor,we may exercise several different parts of the system,
and we have to be careful to understand the costs of those transfers.

Consider, as an example, copying an array. If the source and destination are
in different memories, then the data transfer rate will be limited by the slowest
element along the path: the source memory, the bus, or the destination memory.
The energy required to copy the data will be the sum of the energy costs of all those
components.

The schedule that we use for the transfers also affects latency, as illustrated by
the next example.

Example 7.3

Buffers and latency
Our system needs to process data in three stages:

A buffer B buffer Cbuffer

The data arrives in blocks of n data elements, so we use buffers in between the stages. Since
the data arrives in blocks and not one item at a time, we have some flexibility in the order in
which we process the blocks. Perhaps the easiest schedule for data processing does all the
A operations, then all the Bs, then all the Cs:

A[0]
A[1]
...
a[n-1]
B[0]
B[1]
...
C[0]
C[1]
...

Note that no output is generated until after all of the A and B operations have finished—the
C[0] output is the first to be generated after 2n + 1 operations have been performed. It then
produces all of the outputs on successive cycles (assuming, for simplicity, that the operations
each take one clock cycle).

7.4 Consumer Electronics Architecture 369

But it is not necessary to wait so long for some data. Consider this schedule:

A[0]
B[0]
C[0]
A[1]
B[1]
C[1]
...

This schedule generates the first output after three cycles and generates new outputs every
three cycles thereafter.

Equally important, as we include more components in the transfer, we intro-
duce more opportunities for interruptions and variations in execution time. Any
resource that is shared may be subject to delays caused by other processes that
use the resource. Buses may handle other transfers; memories may also be shared
among several processors.

7.4 CONSUMER ELECTRONICS ARCHITECTURE
Although some predict the complete convergence of all consumer electronic func-
tions into a single device,much as the personal computer now relies on a common
platform, we still have a variety of devices with different functions. However, con-
sumer electronics devices have converged over the past decade around a set of
common features that are supported by common architectural features. Not all
devices have all features, depending on the way the device is to be used, but most
devices select features from a common menu. Similarly, there is no single platform
for consumer electronics devices,but the architectures in use are organized around
some common themes.

This convergence is possible because these devices implement a few basic types
of functions in various combinations: multimedia, communications, and data stor-
age and management. The style of multimedia or communications may vary, and
different devices may use different formats, but this causes variations in hardware
and software components within the basic architectural templates. In this section
we will look at general features of consumer electronics devices; in the following
sections we will study a few devices in more detail.

7.4.1 Use Cases and Requirements
Consumer electronics devices provide several types of services in different
combinations:

■ Multimedia: The media may be audio, still images, or video (which includes
both motion pictures and audio). These multimedia objects are generally

370 CHAPTER 7 Multiprocessors

stored in compressed form and must be uncompressed to be played (audio
playback, video viewing, etc.). A large and growing number of standards have
been developed for multimedia compression:MP3,Dolby Digital(TM),etc. for
audio; JPEG for still images; MPEG-2, MPEG-4, H.264, etc. for video.

■ Data storage and management: Because people want to select what multime-
dia objects they save or play, data storage goes hand-in-hand with multimedia
capture and display. Many devices provide PC-compatible file systems so that
data can be shared more easily.

■ Communications: Communications may be relatively simple, such as a USB
interface to a host computer. The communications link may also be more
sophisticated, such as an Ethernet port or a cellular telephone link.

Consumer electronics devices must meet several types of strict nonfunctional
requirements as well. Many devices are battery-operated, which means that they
must operate under strict energy budgets. A typical battery for a portable device
provides only about 75 mW,which must support not only the processors and digital
electronics but also the display, radio, etc. Consumer electronics must also be very
inexpensive.A typical primary processing chip must sell in the neighborhood of $10.
These devices must also provide very high performance—sophisticated networking
and multimedia compression require huge amounts of computation.

Let’s consider some basic use cases of some basic operations. Figure 7.11 shows
a use case for selecting and playing a multimedia object (an audio clip, a picture,
etc.). Selecting an object makes use of both the user interface and the file system.
Playing also makes use of the file system as well as the decoding subsystem and I/O
subsystem.

Figure 7.12 shows a use case for connecting to a client. The connection may be
either over a local connection like USB or over the Internet. While some operations

power up user interface

directory

decode

select

play

User

FIGURE 7.11

Use case for playing multimedia.

7.4 Consumer Electronics Architecture 371

User

connect

file system

Host
synchronize

FIGURE 7.12

Use case of synchronizing with a host system.

I/O devices

CPU DSP

network
interface

storage

FIGURE 7.13

Functional architecture of a generic consumer electronics device.

may be performed locally on the client device,most of the work is done on the host
system while the connection is established.

7.4.2 Platforms and Operating Systems
Given these types of usage scenarios, we can deduce a few basic characteristics of
the underlying architecture of these devices. Figure 7.13 shows a functional block
diagram of a typical device. The storage system provides bulk, permanent storage.
The network interface may provide a simple USB connection or a full-blown Internet
connection.

Multiprocessor architectures are common in many consumer multimedia
devices. Figure 7.13 shows a two-processor architecture; if more computation is
required, more DSPs and CPUs may be added. The RISC CPU runs the operating
system, runs the user interface, maintains the file system, etc. The DSP performs
signal processing. The DSP may be programmable in some systems; in other cases,
it may be one or more hardwired accelerators.

372 CHAPTER 7 Multiprocessors

The operating system that runs on the CPU must maintain processes and the
file system. Processes are necessary to provide concurrency—for example, the user
wants to be able to push a button while the device is playing back audio. Depending
on the complexity of the device, the operating system may not need to create tasks
dynamically. If all tasks can be created using initialization code,the operating system
can be made smaller and simpler.

7.4.3 Flash File Systems
Many consumer electronics devices use flash memory for mass storage. Flash
memory is a type of semiconductor memory that, unlike DRAM or SRAM, pro-
vides permanent storage. Values are stored in the flash memory cell as electric
charge using a specialized capacitor that can store the charge for years. The
flash memory cell does not require an external power supply to maintain its
value. Furthermore, the memory can be written electrically and, unlike previous
generations of electrically-erasable semiconductor memory, can be written using
standard power supply voltages and so does not need to be disconnected during
programming.

Disk drives, which use rotating magnetic platters, are the most common form
of mass storage in PCs. Disk drives have some advantages: they are much cheaper
than flash memory (at this writing,disk storage costs $0.50 per gigabyte,while flash
memory is slightly less than $50/gigabyte) and they have much greater capacity.
But disk drives also consume more power than flash storage. When devices need a
moderate amount of storage, they often use flash memory.

The file system of a device is typically shared with a PC. In many cases the
memory device is read directly by the PC through a flash card reader or a USB port.
The device must therefore maintain a PC-compatible file system, using the same
directory structure, file names, etc. as are used on a PC.

However, flash memory has one important limitation that must be taken into
account.Writing a flash memory cell causes mechanical stress that eventually wears
out the cell. Today’s flash memories can reliably be written a million times but at
some point they will fail. While a million write cycles may sound like enough to
ensure that the memory will never wear out,creating a single file may require many
write operations, particularly to the part of the memory that stores the directory
information.

A wear-leveling flash file system [Ban95] manages the use of flash memory loca-
tions to equalize wear while maintaining compatibility with existing file systems.
A simple model of a standard file system has two layers: the bottom layer handles
physical reads and writes on the storage device;the top layer provides a logical view
of the file system. A flash file system imposes an intermediate layer that allows the
logical-to-physical mapping of files to be changed. This layer keeps track of how
frequently different sections of the flash memory have been written and allocates
data to equalize wear. It may also move the location of the directory structure
while the file system is operating. Because the directory system receives the most

7.5 Design Example: Cell Phones 373

wear, keeping it in one place may cause part of the memory to wear out before
the rest, unnecessarily reducing the useful life of the memory device. Several flash
file systems have been developed, such as Yet Another Flash Filing System (YAFFS)
[Ale05].

7.5 CELL PHONES
The cell phone is the most popular consumer electronics device in history. The

Design Example

Motorola DynaTAC portable cell phone was introduced in 1973. Today, about one
billion cell phones are sold each year. The cell phone is part of a larger cellular
telephony network,but even as a standalone device the cell phone is a sophisticated
instrument.

As shown in Figure 7.14, cell phone networks are built from a system of base
stations. Each base station has a coverage area known as a cell.A handset belonging
to a user establishes a connection to a base station within its range. If the cell phone
moves out of range, the base stations arrange to hand off the handset to another
base station. The handoff is made seamlessly without losing service.

A cell phone performs several very different functions:

■ It transmits and receives digital data over a radio and may provide analog voice
service as well.

■ It executes a protocol that manages its relationship to the cellular network.

■ It provides a basic user interface to the cell phone.

■ It performs some functions of a PC, such as contact management,multimedia
capture and playback, etc.

Let’s understand these functions one at a time.

base station

cellular
handset

cell

FIGURE 7.14

Cells in a cellular telephone network.

374 CHAPTER 7 Multiprocessors

Early cell phones transmitted voice using analog methods. Today, analog voice
is used only in low-cost cell phones, primarily in the developing world; the
voice signal in most systems is transmitted digitally. A wireless data link must
perform two basic functions: it must modulate or demodulate the data dur-
ing transmission or reception; and it must correct errors using error correcting
codes.

Today’s cell phones generally use traditional radios that use analog and digi-
tal circuits to modulate and demodulate the signal and decode the bits during
reception.A processor in the cell phone sets various radio parameters,such as power
level and frequency. However, the processor does not process the radio frequency
signal itself.

As low power, high performance processors become available, we will see
more cell phones perform at least some of the radio frequency processing in pro-
grammable processors.This technique is often called software radio or software-
defined radio (SDR). SDR helps the cell phone support multiple standards and
a wider variety of signal processing parameters.

Error correction algorithms detect and correct errors in the raw data stream.
Radio channels are sufficiently noisy that powerful error correction algorithms
are necessary to provide reasonable service. Error correction algorithms, such as
Viterbi coding or turbo coding,require huge amounts of computation. Many handset
platforms provide specialized hardware to implement error correction.

Many cell phone standards transmit compressed audio. The audio compression
algorithms have been optimized to provide adequate speech quality. The handset
must compress the audio stream before sending it to the radio and must decompress
the audio stream during reception.

The network protocol that manages the communication between the cell phone
and the network performs several tasks: it sets up and tears down calls; it manages
the hand-off when a handset moves from one base station to another; it manages
the power at which the cell phone transmits, etc.

The protocol’s events are generated at a fairly low rate. These events can be
handled by a CPU.The protocol itself is implemented in software that is handed from
project to project. Since the network protocols change very slowly, this software is
a prime candidate for reuse.

The cell phone may also be used as a data connection for a computer. In this
case, the handset must perform a separate protocol to manage the data flow to and
from the PC.

The basic user interface for a cell phone is straightforward: a few buttons and
a simple display. Early cell phones used microcontrollers to implement their user
interface.

However,modern cell phones do much more than make phone calls. Cell phones
have taken over many of the functions of the PDA,such as contact lists and calendars.
Even mid-range cell phones not only play audio and image or video files,they can also
capture still images and video using built-in cameras. They provide these functions
using a graphical user interface.

7.6 Design Example: Compact DISCs and DVDs 375

analog
radio

A/D DSP

CPU

user
interface

FIGURE 7.15

Baseband processing in cell phones.

Figure 7.15 shows a sketch of the architecture of a typical high-end cell phone.
The radio frequency processing is performed in analog circuits. The baseband pro-
cessing is handled by a combination of a RISC-style CPU and a DSP. The CPU
runs the host operating system and handles the user interface, controlling the
radio, and a variety of other control functions. The DSP performs signal process-
ing: audio compression and decompression, multimedia operations, etc. The DSP
can perform the signal processing functions at lower power consumption levels
than can the RISC processor. The CPU acts as the master, sending requests to
the DSP.

7.6 COMPACT DISCs AND DVDs
Compact DiscTM was introduced in 1980 to provide a mass storage medium for

Design Example

digital audio. It has since become widely used for general purpose data storage and
to record MP3 files for playback. Compact discs use optical storage—the data is
read off the disc using a laser. The design of the CD system is a triumph of signal
processing over mechanics—CD players perform a great deal of signal processing to
compensate for the limitations of a cheap,inaccurate player mechanism.The DVDTM

and more recently, Blu-RayTM provide higher density optical storage. However, the
basic principles governing their operation are the same as those for CD. In this
section we will concentrate on the CD as an example of optical disc technology.

As shown in Figure 7.16, data is stored in pits on the bottom of a compact disc.
A laser beam is reflected or not reflected by the absence or presence of a pit. The
pits are very closely spaced:pits range from 0.8 to 3 �m long and 0.5 �m wide.The
pits are arranged in tracks with 1.6 �m between adjacent tracks.

Unlike magnetic disks,which arrange data in concentric circles,CD data is stored
in a spiral as shown in Figure 7.17.The spiral organization makes sense if the data is

376 CHAPTER 7 Multiprocessors

substrate aluminum
coating

plastic
coating

FIGURE 7.16

Data stored on a compact disc.

FIGURE 7.17

Spiral data organization of a compact disc.

to be played from beginning to end. But as we will see, the spiral complicates some
aspect of CD operation.

The data on a CD is divided into sectors. Each sector has an address so that
the drive can determine its location on the CD. Sectors also contain several bits of
control: P is 1 during music or lead-in and 0 at the start of a selection; Q contains
track number, time, etc.

The compact disc mechanism is shown in Figure 7.18. A sled moves radially
across the CD to be positioned at different points in the spiral data.The sled carries
a laser,optics,and a photo detector. The laser illuminates the CD through the optics.
The same optics capture the reflected light and pass it onto the photo detector.

7.6 Design Example: Compact DISCs and DVDs 377

CD

detectors

diffraction
grating

lens

sled

track

track

focusing coils focusing coils

la
se

r
FIGURE 7.18

A compact disc mechanism.

In-focusOut-of-focus Out-of-focus

FIGURE 7.19

Laser focusing in a CD.

The optics can be focused using some simple electric coils. Laser focus adjusts
for variations in the distance to the CD. As shown in Figure 7.19, an in-focus beam
produces a circular spot, while an out-of-focus beam produces an elliptical spot
with the beam’s major axis indicating the direction of focus. The focus can change
relatively quickly depending on how the CD is seated on the spindle, so the focus
needs to be continuously adjusted.

As shown in Figure 7.20, the laser pickup is divided into six regions, named A, B,
C,D,E,and F.The basic four regions—A,B,C,and D—are used to determine whether
the laser is focused. The focus error signal is (A � C) � (B � D). The magnitude of
the signal gives the amount of focus error and the sign determines the orientation
of the elliptical spot’s major axis.The sum of the four basic regions, A � B � C � D,
gives the laser level to determine whether a pit is being illuminated.Two additional
detectors, E and F, are used to determine when the laser has gone far off the track.
Tracking error is given by E � F.

The sled,focus system,and detector form a servo system. Several different systems
must be controlled: laser focus and tracking must each be controlled at a sample

378 CHAPTER 7 Multiprocessors

A

B

C

D

F

E

Side spot
detectors

Level:
A 1 B 1 C 1 D
Focus error:
(A 1 C) – (B 1 D)

Tracking error:
E–F

FIGURE 7.20

CD laser pickup regions.

rate of 245 kHz; the sled is controlled at 800 Hz. Control algorithms monitor the
level and error signals and determine how to adjust focus, tracking,and sled signals.
These control algorithms are very sophisticated. Each control may require digital
filters with 30 or more coefficients. Several control modes must be programmed,
such as seeking vs. playback. The development of the control algorithms usually
requires several person-years of effort.

The servo control algorithms are generally performed on a programmable DSP.
Although a CD is a very low power device which could benefit from the lower energy
consumption of hardwired servo control, the complexity of the servo algorithms
requires programmability. Not only are the algorithms complex, but different CD
mechanisms may require different control algorithms.

The complete control system for the drive requires more than simple closed-loop
control of the data. For example, when a CD is bumped, the system must reacquire
the proper position on the track. Because the track is arranged in a spiral, and
because the sled mechanism is inaccurate, positioning the read head is harder than
in a magnetic disk.The sled must be positioned to a point before the data’s location;
the system must start reading data and watch for the proper sector to appear, then
start reading again.

The bits on the CD are not encoded directly. To help with tracking, the data
stream must be organized to produce 0–1 transitions at some minimum interval.
An eight-to-fourteen (EFM) encoding is used to ensure a minimum transition
rate. For example, the 8 bits of user data 00000011 is mapped to the 14-bit code
00100100000000. The data are reconstructed from the EFM code using tables.

CD use powerful error correction codes to compensate for inexpensive CD
manufacturing processes and problems during readback. A CD contains 6.99 GB
of raw bits but provides only about 700 MB of formatted data. CDs use a form of
Reed–Solomon coding; the codes are also block interleaved to reduce the effects
of scratches and other bursty errors. Reed–Solomon decoding determines data and
erasure bits.The time required to complete Reed–Solomon coding depends greatly

7.6 Design Example: Compact DISCs and DVDs 379

on the number of erasure bits. As a result, the system may declare an entire block
to be bad if decoding takes too long. Error correction is typically performed by
hardwired units.

CD players are very vulnerable to shaking. Early players could be disrupted by
walking on the floor near the player. Clearly, portable or automotive players would
need even stronger protection against mechanical disturbance. Memory is much
cheaper today than it was when CD players were introduced. A jog memory is
used to buffer data to maintain playing during a jog to the drive. The player reads
ahead and puts data into the jog memory. During a jog, the audio output system
reads data stored in the jog memory while the drive tries to find the proper point
on the CD to continue reading.

Jog control memories also help reduce power consumption.The drive can read
ahead, put a large block of data into the jog memory, then turn the drive off and
play from jog memory. Because the drive motors consume a considerable amount
of power,this strategy saves battery life.When reading compressed music from data
discs, a large part of a song can be put into jog memory.

The result of error correction is the sector data. This can be easily parsed to
determine the audio samples and control information. In the case of an audio disc,
the samples may be directly provided to the audio output subsystem; some players
use digital filters to perform part of the anti-aliasing filtering. In the case of a data
disc, the sector data may be sent to the output registers.

Figure 7.21 shows the hardware architecture of a CD player.The player includes
several processors: servo processor, error correction unit, and audio unit. These
processors operate in parallel to process the stream of data coming from the read
mechanism.

Audio

amp

Jog
memory

Error
corrector

Servo
CPU

Analog
in

Analog
out

FE, TE, amp

focus,
tracking,
sled,
motor

head

drive

memory

memory

display

DAC

I2S

FIGURE 7.21

Hardware architecture of a CD player.

380 CHAPTER 7 Multiprocessors

Writable CDs provide a pilot track that allows the laser and servo to position
the head. The CD system must compute Reed–Solomon codes and EFM codes
to feed the DVD. Data must be provided to the write system continuously, so
the host system must properly buffer data to ensure that it can be delivered
on time.

Several CD formats have been defined. Each standard is published in a separate
document: the Red Book defines the CD digital audio standard; the Yellow Book
defines CD-ROM; the Orange Book defines CD-RW.

Design Example 7.7 AUDIO PLAYERS
Audio players are often called MP3 players after the popular audio data format.
The earliest portable MP3 players were based on compact disc mechanisms. Modern
MP3 players use either flash memory or disk drives to store music.

An MP3 player performs three basic functions: audio storage, audio decompres-
sion, and user interface. Although audio compression is computationally intensive,
audio decompression is relatively lightweight. The incoming bit stream has been
encoded using a Huffman-style code, which must be decoded. The audio data
itself is applied to a reconstruction filter, along with a few other parameters.
MP3 decoding can, for example, be executed using only 10% of an ARM7 CPU.

The user interface of an MP3 player is usually kept simple to minimize both the
physical size and power consumption of the device. Many players provide only a
simple display and a few buttons.

RISC processor DSP audio
interface

CD interface

memory controller

SRAM

ROM

flash, DRAM, SRAM

CD
drive

I/O

FIGURE 7.22

Architecture of a Cirrus audio processor for CD/MP3 players.

7.8 Design Example: Digital Still Cameras 381

The file system of the player generally must be compatible with PCs. CD/MP3
players used compact discs that had been created on PCs. Today’s players can be
plugged into USB ports and treated as disk drives on the host processor.

The Cirrus CS7410 [Cir04B] is an audio controller designed for CD/MP3 play-
ers. The audio controller includes two processors. The 32-bit RISC processor is
used to perform system control and audio decoding. The 16-bit DSP is used to
perform audio effects such as equalization. The memory controller can be inter-
faced to several different types of memory: flash memory can be used for data
or code storage; DRAM can be used as a buffer to handle temporary disruptions
of the CD data stream. The audio interface unit puts out audio in formats that
can be used by A/D converters. General-purpose I/O pins can be used to decode
buttons, run displays, etc. Cirrus provides a reference design for a CD/MP3 player
[Cir04A].

7.8 DIGITAL STILL CAMERAS
The digital still camera bears some resemblance to the film camera but is fundamen-

Design Example

tally different in many respects. The digital still camera not only captures images, it
also performs a substantial amount of image processing that formerly was done by
photofinishers.

Digital image processing allows us to fundamentally rethink the camera. A sim-
ple example is digital zoom, which is used to extend or replace optical zoom.
Many cell phones include digital cameras,creating a hybrid imaging/communication
device.

Digital still cameras must perform many functions:

■ It must determine the proper exposure for the photo.

■ It must display a preview of the picture for framing.

■ It must capture the image from the image sensor.

■ It must transform the image into usable form.

■ It must convert the image into a usable format, such as JPEG, and store the
image in a file system.

A typical hardware architecture for a digital still camera is shown in Figure 7.23.
Most cameras use two processors. The controller sequences operations on the
camera and performs operations like file system management. The DSP concen-
trates on image processing. The DSP may be either a programmable processor or
a set of hardwired accelerators. Accelerators are often used to minimize power
consumption.

The picture taking process can be divided into three main phases: composition,
capture, and storage. We can better understand the variety of functions that must
be performed by the camera through a sequence diagram. Figure 7.24 shows a

382 CHAPTER 7 Multiprocessors

image
sensor

A/D
converter

controller DSP memory flash

buttons

display

FIGURE 7.23

Architecture of a digital still camera.

sequence diagram for taking a picture using a point-and-shoot digital still camera.As
we walk through this sequence diagram,we can introduce some concepts in digital
photography.

When the camera is turned on, it must start to display the image on the camera’s
screen.That imagery comes from the camera’s image sensor.To provide a reasonable
image,it must adjust the image exposure.The camera mechanism provides two basic
exposure controls:shutter speed and aperture.The camera also displays what is seen
through the lens on the camera’s display. In general, the display has fewer pixels
than does the image sensor; the image processor must generate a smaller version of
the image.

When the user depresses the shutter button,a number of steps occur. Before the
image is captured,the final exposure must be determined. Exposure is computed by
analyzing the image characteristics;histograms of the distribution of pixel brightness
are often used to determine focus.The camera must also determine white balance.
Different sources of light, such as sunlight and incandescent lamps,provide light of
different colors. The eye naturally compensates for the color of incident light; the
camera must perform comparable processing to avoid giving the picture a color cast.
White balance algorithms generally use color histograms to determine the range of
colors and re-weigh colors to reduce casts.

The image captured from the image sensor is not directly usable, even after
exposure and white balance. Virtually all still cameras use a single image sensor to
capture a color image. Color is captured using microscopic color filters, each the
size of a pixel, over the image sensor. Since each pixel can capture only one color,
the color filters must be arranged in a pattern across the image sensor. A commonly
used pattern is the Bayer pattern [Bay75] shown in Figure 7.25. This pattern uses
two greens for every red and blue pixel since the human eye is most sensitive to
green. The camera must interpolate colors so that every pixel has red, green, and
blue values.

7.8 Design Example: Digital Still Cameras 383

imager display mass
storage

image
processorcontrolleruser

on

write_JPEG()

shutter button

display_photo()

get_image()

display_preview()

get_image()

set_exposure()

FIGURE 7.24

Sequence diagram for taking a picture with a digital still camera.

After this image processing is complete, the image must be compressed and
saved. Images are often compressed in JPEG format, but other formats, such as GIF,
may also be used. The EXIF standard (http://www.exif.org) defines a file format for
data interchange. Standard compressed image formats such as JPEG are components
of an EXIF image file; the EXIF file may also contain a thumbnail image for preview,
metadata about the picture such as when it was taken, etc.

384 CHAPTER 7 Multiprocessors

green

greenblue

red

FIGURE 7.25

The Bayer pattern for color image pixels.

Image compression need not be performed strictly in real time. However, many
cameras allow users to take a burst of images,in which case the images must be com-
pressed quickly to make room in the image processing pipeline for the next image.

Buffering is very important in digital still cameras. Image processing often takes
longer than capturing an image. Users often want to take a burst of several pictures,
for example during sports events. A buffer memory is used to capture the image
from the sensor and store it until it can be processed by the DSP [Sas91].

The display is often connected to the DSP rather than the system bus. Because the
display is of lower resolution than the image sensor,the images from the image sensor
must be reduced in resolution. Many still cameras use displays originally designed
for camcorders, so the DSP may also need to clip the image to accommodate the
differing aspect ratios of the display and image sensor.

Design Example 7.9 VIDEO ACCELERATOR
In this section we use a video accelerator as an example of an accelerated embedded
system. Digital video is still a computationally intensive task, so it is well suited to
acceleration. Motion estimation engines are used in real-time search engines; we
may want to have one attached to our personal computer to experiment with video
processing techniques.

7.9.1 Algorithm and Requirements
We could build an accelerator for any number of digital video algorithms. We
will choose block motion estimation as our example here because it is very
computation and memory intensive but it is relatively easy to explain.

Block motion estimation is used in digital video compression algorithms so that
one frame in the video can be described in terms of the differences between it and
another frame. Because objects in the frame often move relatively little, describing
one frame in terms of another greatly reduces the number of bits required to describe
the video.

7.9 Design Example: Video Accelerator 385

Search
area

Macroblock

Best match of macroblock
onto search area

Current framePrevious frame

FIGURE 7.26

Block motion estimation.

The concept of block motion estimation is illustrated in Figure 7.26. The goal is
to perform a two-dimensional correlation to find the best match between regions in
the two frames.We divide the current frame into macroblocks (typically,16 � 16).
For every macroblock in the frame,we want to find the region in the previous frame
that most closely matches the macroblock. Searching over the entire previous frame
would be too expensive, so we usually limit the search to a given area, centered
around the macroblock and larger than the macroblock. We try the macroblock
at various offsets in the search area. We measure similarity using the following
sum-of-differences measure:∑

1�i, i�n

∣∣M(i, j) � S(i � ox, j � oy)
∣∣, (7.3)

where M(i, j) is the intensity of the macroblock at pixel i, j, S(i, j) is the intensity
of the search region, n is the size of the macroblock in one dimension, and 〈ox, oy〉
is the offset between the macroblock and search region. Intensity is measured as an
8-bit luminance that represents a monochrome pixel—color information is not used
in motion estimation.We choose the macroblock position relative to the search area
that gives us the smallest value for this metric. The offset at this chosen position
describes a vector from the search area center to the macroblock’s center that is
called the motion vector .

386 CHAPTER 7 Multiprocessors

For simplicity, we will build an engine for a full search, which compares the
macroblock and search area at every possible point. Because this is an expensive
operation,a number of methods have been proposed for conducting a sparser search
of the search area. These methods introduce extra control that would cloud our
discussion, but these algorithms may provide good examples.

A good way to describe the algorithm is in C. Some basic parameters of the
algorithm are illustrated in Figure 7.27. Appearing below is the C code for a single
search,which assumes that the search region does not extend past the boundary of
the frame.

bestx = 0; besty = 0; /* initialize best location-none yet */
bestsad = MAXSAD; /* best sum-of-difference thus far */
for (ox = –SEARCHSIZE; ox < SEARCHSIZE; ox++) {

/* x search ordinate */
for (oy = –SEARCHSIZE; oy < SEARCHSIZE; oy++) {

/* y search ordinate */
int result = 0;
for (i = 0; i < MBSIZE; i++) {

for (j = 0; j < MBSIZE; j++) {
result = result + iabs(mb[i][j] – search[i – ox

+ XCENTER][j – oy + YCENTER]);
}

}
if (result <= bestsad) { /* found better match */

bestsad = result;
bestx = ox; besty = oy;

}
}

The arithmetic on each pixel is simple, but we have to process a lot of pixels.
If MBSIZE is 16 and SEARCHSIZE is 8, and remembering that the search distance in
each dimension is 8 � 1 � 8, then we must perform

nops � (16 � 16) � (17 � 17) � 73984 (7.4)

different operations to find the motion vector for a single macroblock, which
requires looking at twice as many pixels, one from the search area and one from
the macroblock. (We can now see the interest in algorithms that do not require a
full search.) To process video, we will have to perform this computation on every
macroblock of every frame. Adjacent blocks have overlapping search areas, so we
will try to avoid reloading pixels we already have.

One relatively low-resolution standard video format, common intermediate for-
mat, has a frame size of 352 � 288, which gives an array of 22 � 18 macroblocks.
If we want to encode video, we would have to perform motion estimation on

7.9 Design Example: Video Accelerator 387

Limit of search (measured from center)

XCENTER, YCENTER

SEARCHSIZE

ox, oy

MBSIZE

MBSIZE/2

0,0

FIGURE 7.27

Block motion search parameters.

every macroblock of most frames (some frames are sent without using motion
compensation).

We will build the system using an FPGA connected to the PCI bus of a per-
sonal computer. We clearly need a high-bandwidth connection such as the PCI
between the accelerator and the CPU. We can use the accelerator to experiment
with video processing, among other things. Appearing below are the requirements
for the system.

Name Block motion estimator
Purpose Perform block motion estimation within a PC system
Inputs Macroblocks and search areas
Outputs Motion vectors
Functions Compute motion vectors using full search algorithms
Performance As fast as we can get
Manufacturing cost Hundreds of dollars
Power Powered by PC power supply
Physical size and weight Packaged as PCI card for PC

388 CHAPTER 7 Multiprocessors

7.9.2 Specification
The specification for the system is relatively straightforward because the algorithm
is simple. Figure 7.28 defines some classes that describe basic data types in the
system: the motion vector, the macroblock, and the search area. These definitions
are straightforward. Because the behavior is simple, we need to define only two
classes to describe it: the accelerator itself and the PC. These classes are shown in
Figure 7.29. The PC makes its memory accessible to the accelerator. The accelera-
tor provides a behavior compute-mv() that performs the block motion estimation
algorithm. Figure 7.30 shows a sequence diagram that describes the operation of
compute-mv(). After initiating the behavior, the accelerator reads the search area
and macroblock from the PC; after computing the motion vector, it returns it to
the PC.

7.9.3 Architecture
The accelerator will be implemented in an FPGA on a card connected to a PC’s PCI
slot. Such accelerators can be purchased or they can be designed from scratch. If
you design such a card from scratch, you have to decide early on whether the card
will be used only for this video accelerator or if it should be made general enough
to support other applications as well.

The architecture for the accelerator requires some thought because of the large
amount of data required by the algorithm. The macroblock has 16 � 16 � 256; the

x, y pixels[] pixels[]

Motion-vector Macroblock Search-area

FIGURE 7.28

Classes describing basic data types in the video accelerator.

memory[]

PC

compute-mv()

Motion-estimator

FIGURE 7.29

Basic classes for the video accelerator.

7.9 Design Example: Video Accelerator 389

:PC :Motion-estimator

Search
area

Macroblock

compute-mv()

memory[]

memory[]

motion-vector

FIGURE 7.30

Sequence diagram for the video accelerator.

search area has (8 � 8 � 1 � 8 � 8)2 � 1,089 pixels. The FPGA probably will not
have enough memory to hold 1,089 8-bit values. We have to use a memory external
to the FPGA but on the accelerator board to hold the pixels.

There are many possible architectures for the motion estimator. One is shown in
Figure 7.31. The machine has two memories, one for the macroblock and another
for the search memories. It has 16 PEs that perform the difference calculation on
a pair of pixels; the comparator sums them up and selects the best value to find
the motion vector. This architecture can be used to implement algorithms other
than a full search by changing the address generation and control. Depending on
the number of different motion estimation algorithms that you want to execute
on the machine, the networks connecting the memories to the PEs may also be
simplified.

Figure 7.32 shows how we can schedule the transfer of pixels from the memo-
ries to the PEs in order to efficiently compute a full search on this architecture.The
schedule fetches one pixel from the macroblock memory and (in steady state) two
pixels from the search area memory per clock cycle.The pixels are distributed to the
PEs in a regular pattern as shown by the schedule.This schedule computes 16 corre-
lations between the macroblock and search area simultaneously.The computations
for each correlation are distributed among the PEs; the comparator is responsi-
ble for collecting the results, finding the best match value, and remembering the
corresponding motion vector.

390 CHAPTER 7 Multiprocessors

PE0

PE1

PE2

PE15

Comparator

A
d

d
re

ss
 g

en
er

at
o

r

Se
ar

ch
 a

re
a

N
et

w
o

rk
N

et
w

o
rk

Network
control

M
ac

ro
b

lo
ck

Motion
vector

FIGURE 7.31

An architecture for the motion estimation accelerator [Dut96].

Based on our understanding of efficient architectures for accelerating motion
estimation, we can derive a more detailed definition of the architecture in UML,
which is shown in Figure 7.33. The system includes the two memories for pixels,
one a single-port memory and the other dual ported. A bus interface module is
responsible for communicating with the PCI bus and the rest of the system. The
estimation engine reads pixels from the M and S memories, and it takes commands
from the bus interface and returns the motion vector to the bus interface.

7.9.4 Component Design
If we want to use a standard FPGA accelerator board to implement the accelerator,
we must first make sure that it provides the proper memory required for M and S.
Once we have verified that the accelerator board has the required structure,we can
concentrate on designing the FPGA logic. Designing an FPGA is, for the most part,
a straightforward exercise in logic design. Because the logic for the accelerator is
very regular,we can improve the FPGA’s clock rate by properly placing the logic in
the FPGA to reduce wire lengths.

If we are designing our own accelerator board, we have to design both the
video accelerator design proper and the interface to the PCI bus.We can create and
exercise the video accelerator architecture in a hardware description language like
VHDL or Verilog and simulate its operation. Designing the PCI interface requires
somewhat different techniques since we may not have a simulation model for a PCI

7.9 Design Example: Video Accelerator 391

0 M(0,0) S(0,0)

1 M(0,1) S(0,1)

2 M(0,2) S(0,2)

3 M(0,3) S(0,3)

4 M(0,4) S(0,4)

5 M(0,5) S(0,5)

6 M(0,6) S(0,6)

7 M(0,7) S(0,7)

8 M(0,8) S(0,8)

9 M(0,9) S(0,9)

10 M(0,10) S(0,10)

11 M(0,11) S(0,11)

12 M(0,12) S(0,12)

13 M(0,13) S(0,13)

14 M(0,14) S(0,14)

15 M(0,15) S(0,15)

16 M(1,0) S(1,0)

17 M(1,1)

|M(0,0) – S(0,0)|

t M S S9 PE0 PE1 PE2

|M(0,1) – S(0,1)|

|M(0,2) – S(0,2)|

|M(0,3) – S(0,3)|

|M(0,4) – S(0,4)|

|M(0,5) – S(0,5)|

|M(0,6) – S(0,6)|

|M(0,7) – S(0,7)|

|M(0,8) – S(0,8)|

|M(0,9) – S(0,9)|

|M(0,10) – S(0,10)|

|M(0,11) – S(0,11)|

|M(0,12) – S(0,12)|

|M(0,13) – S(0,13)|

|M(0,14) – S(0,14)|

|M(0,15) – S(0,15)|

|M(1,0) – S(1,0)|

|M(1,1) – S(1,1)|

|M(0,0) – S(0,1)|

|M(0,1) – S(0,2)|

|M(0,2) – S(0,3)|

|M(0,3) – S(0,4)|

|M(0,4) – S(0,5)|

|M(0,5) – S(0,6)|

|M(0,6) – S(0,7)|

|M(0,7) – S(0,8)|

|M(0,8) – S(0,9)|

|M(0,9) – S(0,10)|

|M(0,10) – S(0,11)|

|M(0,11) – S(0,12)|

|M(0,12) – S(0,13)|

|M(0,13) – S(0,14)|

|M(0,14) – S(0,15)|

|M(0,15) – S(0,16)|

|M(1,0) – S(1,1)|

|M(0,0) – S(0,2)|

|M(0,1) – S(0,3)|

|M(0,2) – S(0,4)|

|M(0,3) – S(0,5)|

|M(0,4) – S(0,6)|

|M(0,5) – S(0,7)|

|M(0,6) – S(0,8)|

|M(0,7) – S(0,9)|

|M(0,8) – S(0,10)|

|M(0,9) – S(0,11)|

|M(0,10) – S(0,12)|

|M(0,11) – S(0,13)|

|M(0,12) – S(0,14)|

|M(0,13) – S(0,15)|

|M(0,14) – S(0,16)|

|M(0,15) – S(0,17)|S(1,1)

S(0,16)

S(0,17)

FIGURE 7.32

A schedule of pixel fetches for a full search [Yan89].

Interface: PCI interface

PC memory fetch:
memory fetch unit

M memory:
single-port memory Estimator engine:

motion estimator

S memory:
dual-port memory

Takes commands,
returns
motion vector

FIGURE 7.33

Object diagram for the video accelerator.

392 CHAPTER 7 Multiprocessors

bus.We may want to verify the operation of the basic PCI interface before we finish
implementing the video accelerator logic.

The host PC will probably deal with the accelerator as an I/O device. The accel-
erator board will have its own driver that is responsible for talking to the board.
Since most of the data transfers are performed directly by the board using DMA,the
driver can be relatively simple.

7.9.5 System Testing
Testing video algorithms requires a large amount of data. Luckily,the data represents
images and video, which are plentiful. Because we are designing only a motion
estimation accelerator and not a complete video compressor, it is probably easiest
to use images, not video, for test data. You can use standard video tools to extract a
few frames from a digitized video and store them in JPEG format. Open source for
JPEG encoders and decoders is available. These programs can be modified to read
JPEG images and put out pixels in the format required by your accelerator. With
a little more cleverness, the resulting motion vector can be written back onto the
image for a visual confirmation of the result. If you want to be adventurous and
try motion estimation on video,open source MPEG encoders and decoders are also
available.

SUMMARY
Although the design of an accelerator itself is a hardware design task,the design of an
accelerated system requires that we go to a higher level of abstraction. Interactions
between the accelerator and the host system,particularly if the host and accelerator
execute in parallel, make performance analysis a challenge. Based on the results of
performance analysis,we can determine which operations need to go into the accel-
erator and how to coordinate the actions of the host CPU and the accelerator. Many
general-purpose computer systems use accelerators of various types,particularly to
support I/O. Adding an accelerator to an embedded system can be an effective way
of meeting design requirements.

What We Learned

■ Multiprocessors are common in embedded systems because they provide
higher performance and lower power consumption at lower cost.

■ An accelerated system is an example of a custom multiprocessor.

■ Performance analysis of a multiprocessor is challenging.We must consider the
performance of several implementations of an algorithm (CPU,accelerator) as
well as communication costs for various configurations.

■ We must partition the behavior, schedule operations in time, and allocate
operations to processing elements in order to design the system.

Questions 393

■ Consumer electronics devices share many characteristics under the hood.
Multiprocessors are commonly used in consumer electronics devices to
provide real-time performance at low energy consumption levels.

FURTHER READING
Staunstrup andWolf’s edited volume [Sta97B] surveys hardware/software co-design,
including techniques for accelerated systems like those described in this chapter.
The volume edited by De Micheli et al. [DeM01] includes a number of basic papers
on hardware/software co-design. Callahan et al. [Cal00] describe an on-chip recon-
figurable co-processor connected to a CPU. Some information on the history of cell
phones can be found at www.motorola.com. The book DVD Demystified [Tay06]
gives a thorough introduction to the DVD; technical information is also available
at the“DVDTechnical Guide”section of www.pioneerelectronics.com.The Blu-Ray
Association Web site is www.blu-raydisc.com.

QUESTIONS
Q7-1 You are designing an embedded system using an Intel Xeon as a host. Does it

make sense to add an accelerator to implement the function z � ax � by � c?
Explain.

Q7-2 You are designing an embedded system using an embedded processor with
no floating-point support as host. Does it make sense to add an accelerator
to implement the floating-point function s � A sin(2�f � �)? Explain.

Q7-3 You are designing an embedded system using a high-performance embedded
processor with floating point as host. Does it make sense to add an accelerator
to implement the floating-point function s � A sin(2�f � �)? Explain.

Q7-4 You are designing an accelerated system that performs the following function
as its main task:

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
f[i][j] = (pix[i][j – 1] + pix[i – 1][j] +

pix[i][j] + pix[i + 1][j] +
pix[i][j + 1])/(5*MAXVAL);

Assume that the accelerator has the entire pix and f arrays in its internal
memory during the entire computation—pix is read into the accelerator
before the operations begin and f is written out after all computations have
been completed.

394 CHAPTER 7 Multiprocessors

a. Show a system schedule for the host, accelerator, and bus assuming that
the accelerator is inactive during all data transfers. (All data are sent
to the accelerator before it starts and data are read from the accelerator
after the computations are finished.)

b. Show a system schedule for the host, accelerator, and bus assuming that
the accelerator has enough memory for two pix and f arrays and that the
host can transfer data for one set of computations while another set is
being performed.

Q7-5 Find the longest path through the graph below,using the computation times
on the nodes and the communication times on the edges.

P1
2

P3
2

P4
2

P5
1

P2
6

1 1

3

1

1

Q7-6 Each of these task graphs will be run on a two-PE multiprocessor; the two
processing elements are identical. For each of the task graphs, including the
process execution times and communication times,determine the allocation
of processes to PEs that minimizes total execution time.

P1
3

P3
4

P2
2

2

Lab Exercises 395

P1
2

P2
3

3

P3
3

P4
1

4

1 1

2

4

P1
1

P2
2

P5
4

P3
2

P4
3

P6
3

Q7-7 Write pseudocode for an algorithm to determine the longest path through
a system execution graph. The longest path is to be measured from one
designated entry point to one exit point. Each node in the graph is labeled
with a number giving the execution time of the process represented by that
node.

Q7-8 Write pseudocode that describes the schedules shown in Example 7.3:

a. The schedule that performs all As and Bs before any Cs.

b. The schedule that performs A, B, and C on one data element at a time.

Q7-9 Assuming that you can control when the data inputs arrive, which schedule
in Example 7.3 requires the least amount of total buffer space? Justify your
answer.

LAB EXERCISES
L7-1 Determine how much logic in an FPGA must be devoted to a PCI bus interface

and how much would be left for an accelerator core.

396 CHAPTER 7 Multiprocessors

L7-2 Develop a debugging scheme for an accelerator. Determine how you would
easily enter data into the accelerator and easily observe its behavior. You will
need to verify the system thoroughly, starting with basic communication and
going through algorithmic verification.

L7-3 Develop a generic streaming interface for an accelerator.The interface should
allow streaming data to be read by the accelerator from the host’s memory.
It should also allow streaming data to be written from the accelerator back
to memory.The interface should include a host-side mechanism for filling and
draining the streaming data buffers.

CHAPTER

8Networks
■ Why we build networked embedded systems.

■ General network architectures and the ISO network layers.

■ Several networks: I2C, CAN, and Ethernet.

■ Internet-enabled embedded systems.

■ Sensor networks.

■ Elevator controller design example.

INTRODUCTION
In this chapter we study networks that can be used to build distributed
embedded systems. In a distributed embedded system, several processing
elements (PEs) (either microprocessors orASICs) are connected by a network that
allows them to communicate.The application is distributed over the PEs, and some
of the work is done at each node in the network.

There are several reasons to build network-based embedded systems. When
the processing tasks are physically distributed, it may be necessary to put some
of the computing power near where the events occur. Consider, for example,
an automobile: the short time delays required for tasks such as engine control
generally mean that at least parts of the task are done physically close to the
engine. Data reduction is another important reason for distributed processing. It
may be possible to perform some initial signal processing on captured data to
reduce its volume—for example, detecting a certain type of event in a sampled
data stream. Reducing the data on a separate processor may significantly reduce
the load on the processor that makes use of that data. Modularity is another
motivation for network-based design. For instance, when a large system is assem-
bled out of existing components, those components may use a network port as
a clean interface that does not interfere with the internal operation of the com-
ponent in ways that using the microprocessor bus would. A distributed system
can also be easier to debug—the microprocessors in one part of the network can
be used to probe components in another part of the network. Finally, in some
cases, networks are used to build fault tolerance into systems. Distributed embed-
ded system design is another example of hardware/software co-design, since we

397

398 CHAPTER 8 Networks

must design the network topology as well as the software running on the network
nodes.

Of course, the microprocessor bus is a simple type of network. However, we
use the term network to mean an interconnection scheme that does not provide
shared memory communication. In the next section, we develop the basic princi-
ples of hardware and software architectures for networks. Section 8.2 examines
several different networking systems. Section 8.3 considers techniques for the
design of distributed embedded systems. Section 8.4 focuses on how embedded
systems can be designed to talk to the Internet. Section 8.5 looks at the networked
electronics in automobiles and airplanes. Section 8.6 introduces some basic prin-
ciples of wireless sensor networks. Section 8.7 presents an elevator system as an
example of network-based design.

8.1 DISTRIBUTED EMBEDDED ARCHITECTURES
A distributed embedded system can be organized in many different ways, but its
basic units are the PE and the network as illustrated in Figure 8.1. A PE may be
an instruction set processor such as a DSP, CPU, or microcontroller, as well as
a nonprogrammable unit such as the ASICs used to implement PE 4. An I/O device
such as PE 1 (which we call here a sensor or actuator , depending on whether
it provides input or output) may also be a PE, so long as it can speak the net-
work protocol to communicate with other PEs. The network in this case is a
bus, but other network topologies are also possible. It is also possible that the
system can use more than one network, such as when relatively independent func-
tions require relatively little communication among them. We often refer to the
connection between PEs provided by the network as a communication link.

Sensor/
actuator

16-bit CPU

PE 2PE 1

DSP

PE 3

ASIC

PE 4

Microcontroller

PE 5

Network

FIGURE 8.1

An example of a distributed embedded system.

8.1 Distributed Embedded Architectures 399

The system of PEs and networks forms the hardware platform on which the
application runs.

However, unlike the system bus of Chapter 4, the distributed embedded system
does not have memory on the bus (unless a memory unit is organized as an I/O
device that speaks the network protocol). In particular, PEs do not fetch instruc-
tions over the network as they do on the microprocessor bus. We take advantage of
this fact when analyzing network performance—the speed at which PEs can com-
municate over the bus would be difficult if not impossible to predict if we allowed
arbitrary instruction and data fetches as we do on microprocessor buses.

8.1.1 Why Distributed?
Building an embedded system with several PEs talking over a network is definitely
more complicated than using a single large microprocessor to perform the same
tasks. So why would anyone build a distributed embedded system? All the reasons
for designing accelerator systems also apply to distributed embedded systems, and
several more reasons are unique to distributed systems.

In some cases,distributed systems are necessary because the devices that the PEs
communicate with are physically separated. If the deadlines for processing the data
are short, it may be more cost-effective to put the PEs where the data are located
rather than build a higher-speed network to carry the data to a distant, fast PE.

An important advantage of a distributed system with several CPUs is that one
part of the system can be used to help diagnose problems in another part. Whether
you are debugging a prototype or diagnosing a problem in the field, isolating the
error to one part of the system can be difficult when everything is done on a single
CPU. If you have several CPUs in the system,you can use one to generate inputs for
another and to watch its output.

8.1.2 Network Abstractions
Networks are complex systems. Ideally, they provide high-level services while hid-
ing many of the details of data transmission from the other components in the
system. In order to help understand (and design) networks, the International Stan-
dards Organization has developed a seven-layer model for networks known as
Open Systems Interconnection (OSI) models [Sta97A]. Understanding the OSI
layers will help us to understand the details of real networks.

The seven layers of the OSI model, shown in Figure 8.2, are intended to cover
a broad spectrum of networks and their uses. Some networks may not need the
services of one or more layers because the higher layers may be totally missing or
an intermediate layer may not be necessary. However, any data network should fit
into the OSI model. The OSI layers from lowest to highest level of abstraction are
described below.

■ Physical: The physical layer defines the basic properties of the interface
between systems, including the physical connections (plugs and wires),

400 CHAPTER 8 Networks

Application

Presentation

Session

Transport

Network

Data link

Physical

End-use interface

Data format

Application dialog control

Connections

End-to-end service

Reliable data transport

Mechanical, electrical

FIGURE 8.2

The OSI model layers.

electrical properties, basic functions of the electrical and physical compo-
nents, and the basic procedures for exchanging bits.

■ Data link: The primary purpose of this layer is error detection and control
across a single link. However, if the network requires multiple hops over sev-
eral data links, the data link layer does not define the mechanism for data
integrity between hops, but only within a single hop.

■ Network: This layer defines the basic end-to-end data transmission service.
The network layer is particularly important in multihop networks.

■ Transport: The transport layer defines connection-oriented services that
ensure that data are delivered in the proper order and without errors across
multiple links.This layer may also try to optimize network resource utilization.

■ Session: A session provides mechanisms for controlling the interaction of end-
user services across a network, such as data grouping and checkpointing.

■ Presentation: This layer defines data exchange formats and provides transfor-
mation utilities to application programs.

■ Application: The application layer provides the application interface between
the network and end-user programs.

Although it may seem that embedded systems would be too simple to require use
of the OSI model, the model is in fact quite useful. Even relatively simple embedded
networks provide physical, data link, and network services. An increasing number
of embedded systems provide Internet service that requires implementing the full
range of functions in the OSI model.

8.1 Distributed Embedded Architectures 401

8.1.3 Hardware and Software Architectures
Distributed embedded systems can be organized in many different ways depending
upon the needs of the application and cost constraints. One good way to understand
possible architectures is to consider the different types of interconnection networks
that can be used.

A point-to-point link establishes a connection between exactly two PEs. Point-
to-point links are simple to design precisely because they deal with only two com-
ponents.We do not have to worry about other PEs interfering with communication
on the link.

Figure 8.3 shows a simple example of a distributed embedded system built from
point-to-point links. The input signal is sampled by the input device and passed to
the first digital filter, F1, over a point-to-point link. The results of that filter are sent
through a second point-to-point link to filter F2. The results in turn are sent to the
output device over a third point-to-point link. A digital filtering system requires that
its outputs arrive at strict intervals, which means that the filters must process their
inputs in a timely fashion. Using point-to-point connections allows both F1 and F2
to receive a new sample and send a new output at the same time without worrying
about collisions on the communications network.

It is possible to build a full-duplex, point-to-point connection that can be used
for simultaneous communication in both directions between the two PEs. (A half-
duplex connection allows for only one-way communication.)

A bus is a more general form of network since it allows multiple devices to
be connected to it. Like a microprocessor bus, PEs connected to the bus have
addresses. Communications on the bus generally take the form of packets as
illustrated in Figure 8.4. A packet contains an address for the destination and the

Input
device

Output
device

F1 F2

FIGURE 8.3

A signal processing system built from print-to-point links.

Header Address Data

Time

Error
correction

FIGURE 8.4

Format of a typical message on a bus.

402 CHAPTER 8 Networks

data to be delivered. It frequently includes error detection/correction information
such as parity. It also may include bits that serve to signal to other PEs that the
bus is in use, such as the header shown in the figure. The data to be transmitted
from one PE to another may not fit exactly into the size of the data payload
on the packet. It is the responsibility of the transmitting PE to divide its data into
packets; the receiving PE must of course reassemble the complete data message
from the packets.

Distributed system buses must be arbitrated to control simultaneous access, just
as with microprocessor buses. Arbitration scheme types are summarized below.

■ Fixed-priority arbitration always gives priority to competing devices in the
same way. If a high-priority and a low-priority device both have long data
transmissions ready at the same time, it is quite possible that the low-priority
device will not be able to transmit anything until the high-priority device has
sent all its data packets.

■ Fair arbitration schemes make sure that no device is starved. Round-robin
arbitration is the most commonly used of the fair arbitration schemes.
The PCI bus requires that the arbitration scheme used on the bus must
be fair, although it does not specify a particular arbitration scheme. Most
implementations of PCI use round-robin arbitration.

A bus has limited available bandwidth. Since all devices connect to the bus,
communications can interfere with each other. Other network topologies can be
used to reduce communication conflicts.At the opposite end of the generality spec-
trum from the bus is the crossbar network shown in Figure 8.5.A crossbar not only
allows any input to be connected to any output, it also allows all combinations of
input/output connections to be made. Thus, for example, we can simultaneously

Crosspoint A

Out4

Out3

Out2

Out1

In1 In2 In3 In4

FIGURE 8.5

A crossbar network.

8.1 Distributed Embedded Architectures 403

connect in1 to out4, in2 to out3, in3 to out2, and in4 to out1 or any other
combinations of inputs. (Multicast connections can also be made from one input
to several outputs.) A crosspoint is a switch that connects an input to an output.
To connect an input to an output, we activate the crosspoint at the intersection
between the corresponding input and output lines in the crossbar. For example, to
connect in2 and out3 in the figure, we would activate crossbar A as shown. The
major drawback of the crossbar network is expense: The size of the network grows
as the square of the number of inputs (assuming the numbers of inputs and outputs
are equal).

Many other networks have been designed that provide varying amounts of
parallel communication at varying hardware costs. Figure 8.6 shows an example
multistage network. The crossbar of Figure 8.5 is a direct network in which
messages go from source to destination without going through any memory ele-
ment. Multistage networks have intermediate routing nodes to guide the data
packets.

Most networks are blocking, meaning that there are some combinations of
sources and destinations for which messages cannot be delivered simultaneously.
A bus is a maximally blocking network since any message on the bus blocks messages
from any other node. A crossbar is non-blocking.

In general, networks differ from microprocessor buses in how they imple-
ment communication protocols. Both need handshaking to ensure that PEs do
not interfere with each other. But in most networks, most of the protocol is per-
formed in software. Microprocessors rely on bus hardware for fast transfers of
instructions and data to and from the CPU. Most embedded network ports on
microprocessors implement the basic communication functions (such as driving
the communications medium) in hardware and implement many other operations in
software.

Output PEs

Input PEs

Switching
element

FIGURE 8.6

A multistage network.

404 CHAPTER 8 Networks

An alternative to a non-bus network is to use multiple networks. As with PEs,
it may be cheaper to use two slow, inexpensive networks than a single high-
performance, expensive network. If we can segregate critical and noncritical
communications onto separate networks, it may be possible to use simpler topolo-
gies such as buses. Many systems use serial links for low-speed communication and
CPU buses for higher speed and volume data transfers.

8.1.4 Message Passing Programming
Distributed embedded systems do not have shared memory,so they must communi-
cate by passing messages. We will refer to a message as the natural communication
unit of an algorithm; in general, a message must be broken up into packets to be
sent on the network. A procedural interface for sending a packet might look like
the following:

send_packet(address,data);

The routine should return a value to indicate whether the message was sent
successfully if the network includes a handshaking protocol. If the message to be
sent is longer than a packet, it must be broken up into packet-size data segments as
follows:

for (i = 0; i < message.length; i = i + PACKET_SIZE)
send_packet(address,&message.data[i]);

The above code uses a loop to break up an arbitrary-length message into packet-
size chunks. However, clever system design may be able to recast the message to
take advantage of the packet format. For example, clever encoding may reduce
the length of the message enough so that it fits into a single packet. On the
other hand, if the message is shorter than a packet or not an even multiple of the
packet data size, some extra information may be packed into the remaining bits of
a packet.

Reception of a packet will probably be implemented with interrupts. The sim-
plest procedural interface will simply check to see whether a received message is
waiting in a buffer. In a more complex RTOS-based system, reception of a packet
may enable a process for execution.

As seen in Section 6.4, communication may be blocking or non-blocking. Of
course,the simplest implementation of message passing is blocking,with the routine
not returning until it has transmitted or received. A non-blocking network inter-
face requires a queue of data to be sent, with the network driver sending packets
off the head of the queue and placing received packets on the tail of the queue.
A non-blocking communication mechanism makes sense only when concurrency
is available between computing and data transfer.

Network protocols may encourage a data-push design style for the system
built around the network. In a single-CPU environment,a program typically initiates
a read whenever it wants data. In many networked systems, nodes send values out

8.2 Networks for Embedded Systems 405

without any request from the intended user of the system. Data-push programming
makes sense for periodic data—if the data will always be used at regular intervals,
we can reduce data traffic on the network by automatically sending it when it is
needed. Example 8.1 shows an application that can make good use of the data-push
architecture.

Example 8.1

Data-push network architectures
Consider the following automobile in which distributed sensors and actuators talk to a central
controller:

Airbags

Brakes

Brakes

Side impact sensors

Central
controller

Engine

Front
impact
sensor

The sensors generally need to be sampled periodically. In such a system, it makes sense
for sensors to transmit their data automatically rather than waiting for the controller to
request it.

8.2 NETWORKS FOR EMBEDDED SYSTEMS
Networks for embedded computing span a broad range of requirements; many of
those requirements are very different from those for general-purpose networks.
Some networks are used in safety-critical applications, such as automotive control.
Some networks, such as those used in consumer electronics systems, must be very
inexpensive. Other networks,such as industrial control networks,must be extremely
rugged and reliable.

406 CHAPTER 8 Networks

Several interconnect networks have been developed especially for distributed
embedded computing:

■ The I2C bus is used in microcontroller-based systems.

■ The Controller Area Network (CAN) bus was developed for automotive
electronics. It provides megabit rates and can handle large numbers of devices.

■ Ethernet and variations of standard Ethernet are used for a variety of control
applications.

In addition, many networks designed for general-purpose computing have been
put to use in embedded applications as well.

In this section, we study some commonly used embedded networks, includ-
ing the I2C bus and Ethernet; we will also briefly discuss networks for industrial
applications.

8.2.1 The I2C Bus
The I2C bus [Phi92] is a well-known bus commonly used to link microcontrollers
into systems. It has even been used for the command interface in an MPEG-2
video chip [van97]; while a separate bus was used for high-speed video data, setup
information was transmitted to the on-chip controller through an I2C bus interface.

I2C is designed to be low cost,easy to implement,and of moderate speed (up to
100 KB/s for the standard bus and up to 400 KB/s for the extended bus). As a result,
it uses only two lines: the serial data line (SDL) for data and the serial clock
line (SCL), which indicates when valid data are on the data line. Figure 8.7 shows
the structure of a typical I2C bus system. Every node in the network is connected
to both SCL and SDL. Some nodes may be able to act as bus masters and the bus

Master 1

Master 2

Slave 1

SDL

SCL

FIGURE 8.7

Structure of an I2C bus system.

8.2 Networks for Embedded Systems 407

may have more than one master. Other nodes may act as slaves that only respond
to requests from masters.

The basic electrical interface to the bus is shown in Figure 8.8.The bus does not
define particular voltages to be used for high or low so that either bipolar or MOS
circuits can be connected to the bus. Both bus signals use open collector/open drain
circuits.1 A pull-up resistor keeps the default state of the signal high,and transistors
are used in each bus device to pull down the signal when a 0 is to be transmitted.
Open collector/open drain signaling allows several devices to simultaneously write
the bus without causing electrical damage.

The open collector/open drain circuitry allows a slave device to stretch a clock
signal during a read from a slave. The master is responsible for generating the SCL
clock,but the slave can stretch the low period of the clock (but not the high period)
if necessary.

The I2C bus is designed as a multimaster bus—any one of several different
devices may act as the master at various times. As a result, there is no global mas-
ter to generate the clock signal on SCL. Instead, a master drives both SCL and SDL
when it is sending data. When the bus is idle,both SCL and SDL remain high. When
two devices try to drive either SCL or SDL to different values, the open collector/
open drain circuitry prevents errors, but each master device must listen to the bus
while transmitting to be sure that it is not interfering with another message—if the
device receives a different value than it is trying to transmit, then it knows that it is
interfering with another message.

Assert
data

Data in

Data interface

Assert
clock

Clock in

Clock interface

1

1

SDL

SCL

FIGURE 8.8

Electrical interface to the I2C bus.

1An open collector uses a bipolar transistor, while an open drain circuit uses an MOS transistor.

408 CHAPTER 8 Networks

Every I2C device has an address.The addresses of the devices are determined by
the system designer,usually as part of the program for the I2C driver.The addresses
must of course be chosen so that no two devices in the system have the same
address. A device address is 7 bits in the standard I2C definition (the extended I2C
allows 10-bit addresses). The address 0000000 is used to signal a general call or
bus broadcast, which can be used to signal all devices simultaneously. The address
11110XX is reserved for the extended 10-bit addressing scheme; there are several
other reserved addresses as well.

A bus transaction comprised a series of 1-byte transmissions and an address
followed by one or more data bytes. I2C encourages a data-push programming style.
When a master wants to write a slave, it transmits the slave’s address followed by
the data. Since a slave cannot initiate a transfer, the master must send a read request
with the slave’s address and let the slave transmit the data. Therefore, an address
transmission includes the 7-bit address and 1 bit for data direction: 0 for writing
from the master to the slave and 1 for reading from the slave to the master. (This
explains the 7-bit addresses on the bus.) The format of an address transmission is
shown in Figure 8.9.

A bus transaction is initiated by a start signal and completed with an end signal
as follows:

■ A start is signaled by leaving the SCL high and sending a 1 to 0 transition on
SDL.

■ A stop is signaled by setting the SCL high and sending a 0 to 1 transition on
SDL.

However, starts and stops must be paired. A master can write and then read
(or read and then write) by sending a start after the data transmission, followed by
another address transmission and then more data. The basic state transition graph
for the master’s actions in a bus transaction is shown in Figure 8.10.

The formats of some typical complete bus transactions are shown in Figure 8.11.
In the first example, the master writes 2 bytes to the addressed slave. In the
second, the master requests a read from a slave. In the third, the master writes
1 byte to the slave, and then sends another start to initiate a read from the
slave.

Figure 8.12 shows how a data byte is transmitted on the bus, including start and
stop events.The transmission starts when SDL is pulled low while SCL remains high.

Device address R/W

7 bits 1 bit

FIGURE 8.9

Format of an I2C address transmission.

8.2 Networks for Embedded Systems 409

Address

Idle
Address, 0

Address, 1

Start

Stop

Stop

Start

Start

Data
read

Get
data

Data
write

Send
data

FIGURE 8.10

State transition graph for an I2C bus master.

0S Data

Write

Read From slave

Data P7-bit address

1S Data Stop

Start

P7-bit address

Write

0S Data S7-bit address

Read From slave

1 Data P7-bit address

FIGURE 8.11

Typical bus transactions on the I2C bus.

8-bit byteMSB

SDL

SCL

Start Stop
Acknowledge

FIGURE 8.12

Transmitting a byte on the I2C bus.

410 CHAPTER 8 Networks

After this start condition, the clock line is pulled low to initiate the data transfer.
At each bit, the clock line goes high while the data line assumes its proper value of
0 or 1.An acknowledgment is sent at the end of every 8-bit transmission,whether it
is an address or data. For acknowledgment, the transmitter does not pull down the
SDL, allowing the receiver to set the SDL to 0 if it properly received the byte. After
acknowledgment, the SDL goes from low to high while the SCL is high, signaling
the stop condition.

The bus uses this feature to arbitrate on each message. When sending, devices
listen to the bus as well. If a device is trying to send a logic 1 but hears a logic 0,
it immediately stops transmitting and gives the other sender priority. (The devices
should be designed so that they can stop transmitting in time to allow a valid bit to
be sent.) In many cases,arbitration will be completed during the address portion of
a transmission,but arbitration may continue into the data portion. If two devices are
trying to send identical data to the same address,then of course they never interfere
and both succeed in sending their message.

The I2C interface on a microcontroller can be implemented with varying per-
centages of the functionality in software and hardware [Phi89]. As illustrated in
Figure 8.13, a typical system has a 1-bit hardware interface with routines for byte-
level functions. The I2C device takes care of generating the clock and data. The
application code calls routines to send an address, send a data byte, and so on,
which then generates the SCL and SDL, acknowledges, and so forth. One of the
microcontroller’s timers is typically used to control the length of bits on the bus.
Interrupts may be used to recognize bits. However, when used in master mode,
polled I/O may be acceptable if no other pending tasks can be performed, since
masters initiate their own transfers.

Memory

Application

Microprocessor

Bytes Driver

Microcontroller

I2C
device

Interrupt

D
at

a

C
o

n
tr

o
l

SCL SDL

Bits

FIGURE 8.13

An I2C interface in a microcontroller.

8.2 Networks for Embedded Systems 411

8.2.2 Ethernet
Ethernet is very widely used as a local area network for general-purpose computing.
Because of its ubiquity and the low cost of Ethernet interfaces,it has seen significant
use as a network for embedded computing. Ethernet is particularly useful when PCs
are used as platforms,making it possible to use standard components,and when the
network does not have to meet rigorous real-time requirements.

The physical organization of an Ethernet is very simple,as shown in Figure 8.14.
The network is a bus with a single signal path; the Ethernet standard allows for
several different implementations such as twisted pair and coaxial cable.

Unlike the I2C bus,nodes on the Ethernet are not synchronized—they can send
their bits at any time. I2C relies on the fact that a collision can be detected and
quashed within a single bit time thanks to synchronization. But since Ethernet
nodes are not synchronized, if two nodes decide to transmit at the same time,
the message will be ruined. The Ethernet arbitration scheme is known as Carrier
Sense Multiple Access with Collision Detection (CSMA/CD). The algorithm is
outlined in Figure 8.15. A node that has a message waits for the bus to become
silent and then starts transmitting. It simultaneously listens, and if it hears another
transmission that interferes with its transmission, it stops transmitting and waits to
retransmit.The waiting time is random,but weighted by an exponential function of
the number of times the message has been aborted. Figure 8.16 shows the expo-
nential backoff function both before and after it is modulated by the random wait
time. Since a message may be interfered with several times before it is successfully
transmitted,the exponential backoff technique helps to ensure that the network
does not become overloaded at high demand factors. The random factor in the
wait time minimizes the chance that two messages will repeatedly interfere with
each other.

The maximum length of an Ethernet is determined by the nodes’ability to detect
collisions. The worst case occurs when two nodes at opposite ends of the bus are
transmitting simultaneously. For the collision to be detected by both nodes, each
node’s signal must be able to travel to the opposite end of the bus so that it can
be heard by the other node. In practice, Ethernets can run up to several hundred
meters.

A CB

FIGURE 8.14

Ethernet organization.

412 CHAPTER 8 Networks

Ethernet

Transmit

Abort Wait backup

Increment

Collision?

Done?

Start

Yes

Yes

No

No

No

Yes

Finish

FIGURE 8.15

The Ethernet CSMA/CD algorithm.

0 1 2 3 4

Randomly
dithered
times

Wait
time

Number of attempts

Exponential
weighting function

FIGURE 8.16

Exponential backoff times.

8.3 Network-Based Design 413

Preamble Start
frame

Destination
address

Source
address

Length Padding CRCData

FIGURE 8.17

Ethernet packet format.

Figure 8.17 shows the basic format of an Ethernet packet. It provides addresses
of both the destination and the source. It also provides for a variable-length data
payload.

The fact that it may take several attempts to successfully transmit a message and
that the waiting time includes a random factor makes Ethernet performance difficult
to analyze. It is possible to perform data streaming and other real-time activities on
Ethernets,particularly when the total network load is kept to a reasonable level,but
care must be taken in designing such systems.

Ethernet was not designed to support real-time operations; the exponential
backoff scheme cannot guarantee delivery time of any data. Because so much Ether-
net hardware and software is available,many different approaches have been devel-
oped to extend Ethernet to real-time operation; some of these are compatible with
the standard while others are not.As Decotignie points out [Dec05], there are three
ways to reduce the variance in Ethernet’s packet delivery time:suppress collisions on
the network,reduce the number of collisions,or resolve collisions deterministically.
Felser [Fel05] describes several real-time Ethernet architectures.

8.2.3 Fieldbus
Manufacturing systems require networked sensors and actuators. Fieldbus
(http://www.fieldbus.org) is a set of standards for industrial control and instru-
mentation systems.

The H1 standard uses a twisted-pair physical layer that runs at 31.25 MB/s. It is
designed for device integration and process control.

The High Speed Ethernet standard is used for backbone networks in industrial
plants. It is based on the 100 MB/s Ethernet standard. It can integrate devices and
subsystems.

8.3 NETWORK-BASED DESIGN
Designing a distributed embedded system around a network involves some of the
same design tasks we faced in accelerated systems.We must schedule computations
in time and allocate them to PEs. Scheduling and allocation of communication are
important additional design tasks required for many distributed networks. Many
embedded networks are designed for low cost and therefore do not provide exces-
sively high communication speed. If we are not careful, the network can become

414 CHAPTER 8 Networks

the bottleneck in system design. In this section we concentrate on design tasks
unique to network-based distributed embedded systems.

We know how to analyze the execution time of programs and systems of pro-
cesses on single CPUs, but to analyze the performance of networks we must know
how to determine the delay incurred by transmitting messages. Let us assume for
the moment that messages are sent reliably—we do not have to retransmit a mes-
sage. The message delay for a single message with no contention (as would be
the case in a point-to-point connection) can be modeled as

tm � tx � tn � tr
(8.1)

where tx is the transmitter-side overhead, tn is the network transmission time, and
tr is the receiver-side overhead. In I2C, tx and tr are negligible relative to tn, as
illustrated by Example 8.2.

Example 8.2

Simple message delay for an I2C message
Let’s assume that our I2C bus runs at the rate of 100 KB/s and that we need to send one 8-bit
byte. Based on the message format shown in Figure 8.9, we can compute the number of bits
in the complete packet:

npacket � startbit � address � data � stopbit

� 1 � 8 � 8 � 1 � 18 bits

The time required, then, to transmit the packet is

tn � npacket � tbit � 1.8 � 10�4 s.

Some of the instructions in the transmitter and receiver drivers—namely, the loops that
send bytes to and receive bytes from the network interface—will run concurrently with the
message transmission. If we assume that 20 instructions outside of these loops are executed
by the transmitter and receiver, overheads on an 8 MHz microcontroller would be as follows:

tx � tr � 20 � 0.125 � 10�6 � 2.5 � 10�6.

The total message delay is:

tm � 2.5 � 10�6 � 1.8 � 10�4 � 2.5 � 10�6 � 1.85 � 10�4.

Overhead is <3% of the total message time in this case.

If messages can interfere with each other in the network, analyzing communi-
cation delay becomes difficult. In general, because we must wait for the network
to become available and then transmit the message, we can write the message
delay as

ty � td � tm (8.2)

where td is the network availability delay incurred waiting for the network to
become available.The main problem,therefore,is calculating td .That value depends
on the type of arbitration used in the network.

8.3 Network-Based Design 415

■ If the network uses fixed-priority arbitration, the network availability delay is
unbounded for all but the highest-priority device. Since the highest-priority
device always gets the network first, unless there is an application-specific
limit on how long it will transmit before relinquishing the network, it can
keep blocking the other devices indefinitely.

■ If the network uses fair arbitration, the network availability delay is bounded.
In the case of round-robin arbitration, if there are N devices, then the worst-
case network availability delay is N (tx � tarb),where tarb is the delay incurred
for arbitration. tarb is usually small compared to transmission time.

Even when round-robin arbitration is used to bound the network availability
delay, the waiting time can be very long. If we add acknowledgment and data cor-
ruption into the analysis, figuring network delay is more difficult. Assuming that
errors are random, we cannot predict a worst-case delay since every packet may
contain an error. We can, however, compute the probability that a packet will be
delayed for more than a given amount of time. However,such analysis is beyond the
scope of this book.

Arbitration on networks is a form of prioritization. Therefore, we can use the
techniques we learned for process scheduling in Chapter 6 to help us schedule
communications. In a rate-monotonic communication scheme, the task with the
shortest deadline should be assigned the highest priority in the network.

Our process scheduling model assumed that we could interrupt processes at any
point. But network communications are organized into packets. In most networks
we cannot interrupt a packet transmission to take over the network for a higher-
priority packet.As a result,networks exhibit priority inversion like that introduced in
Chapter 6.When a low-priority message is on the network,the network is effectively
allocated to that low-priority message,allowing it to block higher-priority messages.
This cannot cause deadlock since each message has a bounded length,but it can slow
down critical communications. The only solution is to analyze network behavior
to determine whether priority inversion causes some messages to be delayed for
too long.

Of course,a round-robin arbitrated network puts all communications at the same
priority. This does not eliminate the priority inversion problem because processes
still have priorities.

Thus far we have assumed a single-hop network: A message is received at its
intended destination directly from the source,without going through any other net-
work node. It is possible to build multihop networks in which messages are routed
through network nodes to get to their destinations. (Using a multistage network does
not necessarily mean using a multihop network—the stages in a multistage network
are generally much smaller than the network PEs.) Figure 8.18 shows an example
of a multihop communication. The hardware platform has two separate networks
(perhaps so that communications between subsets of the PEs do not interfere),but
there is no direct path from M1 to M5.The message is therefore routed through M3,
which reads it from one network and sends it on to the other one. Analyzing delays

416 CHAPTER 8 Networks

M1

M3

M2

M4 M5

FIGURE 8.18

A multihop communication.

through multihop systems is very difficult. For example,the time that the message is
held at M3 depends on both the computational load of M3 and the other messages
that it must handle.

If there is more than one network,we must allocate communications to the net-
works. We may establish multiple networks so that lower-priority communications
can be handled separately without interfering with high-priority communications
on the primary network.

Scheduling and allocation of computations and communications are clearly
interrelated. If we change the allocation of computations, we change not only
the scheduling of processes on those PEs but also potentially the schedules of
PEs with which they communicate. For example, if we move a computation to
a slower PE, its results will be available later, which may mean rescheduling both
the process that uses the value and the communication that sends the value to its
destination.

8.4 INTERNET-ENABLED SYSTEMS
Some very different types of distributed embedded system are rapidly emerging—
the Internet-enabled embedded system and Internet appliances.The Internet
is not well suited to the real-time tasks that are the bread and butter of embedded
computing, but it does provide a rich environment for non–real-time interaction.
In this section we will discuss the Internet and how it can be used by embedded
computing systems.

8.4 Internet-Enabled Systems 417

8.4.1 Internet
The Internet Protocol (IP) [Los97, Sta97A] is the fundamental protocol on
the Internet . It provides connectionless, packet-based communication. Industrial
automation has long been a good application area for Internet-based embedded sys-
tems. Information appliances that use the Internet are rapidly becoming another
use of IP in embedded computing.

Internet protocol is not defined over a particular physical implementation—it is
an internetworking standard. Internet packets are assumed to be carried by some
other network, such as an Ethernet. In general, an Internet packet will travel over
several different networks from source to destination. The IP allows data to flow
seamlessly through these networks from one end user to another. The relationship
between IP and individual networks is illustrated in Figure 8.19. IP works at the net-
work layer. When node A wants to send data to node B, the application’s data pass
through several layers of the protocol stack to send to the IP. IP creates packets for
routing to the destination,which are then sent to the data link and physical layers.
A node that transmits data among different types of networks is known as a router .
The router’s functionality must go up to the IP layer, but since it is not running
applications, it does not need to go to higher levels of the OSI model. In general,
a packet may go through several routers to get to its destination. At the destination,
the IP layer provides data to the transport layer and ultimately the receiving appli-
cation. As the data pass through several layers of the protocol stack, the IP packet
data are encapsulated in packet formats appropriate to each layer.

The basic format of an IP packet is shown in Figure 8.20. The header and data
payload are both of variable length. The maximum total length of the header and
data payload is 65,535 bytes.

An Internet address is a number (32 bits in early versions of IP, 128 bits in
IPv6). The IP address is typically written in the form xxx.xx.xx.xx. The names by
which users and applications typically refer to Internet nodes, such as foo.baz.com,

Application

Transport

Network

Data link

Network

IP

Physical

Data link

Physical

Node A Node BRouter

Application

Transport

Network

Data link

Physical

FIGURE 8.19

Protocol utilization in Internet communication.

418 CHAPTER 8 Networks

Version Header
length

Time to live Protocol

Source address

Destination address

Options and padding

Data
. . .

Header checksum

Service
type

Total length

Identification Flags Fragment offset

Header

Data
payload

FIGURE 8.20

IP packet structure.

are translated into IP addresses via calls to a Domain Name Server , one of the
higher-level services built on top of IP.

The fact that IP works at the network layer tells us that it does not guarantee that
a packet is delivered to its destination. Furthermore,packets that do arrive may come
out of order. This is referred to as best-effort routing. Since routes for data may
change quickly with subsequent packets being routed along very different paths
with different delays, real-time performance of IP can be hard to predict. When a
small network is contained totally within the embedded system, performance can
be evaluated through simulation or other methods because the possible inputs are
limited. Since the performance of the Internet may depend on worldwide usage
patterns, its real-time performance is inherently harder to predict.

The Internet also provides higher-level services built on top of IP. The Trans-
mission Control Protocol (TCP) is one such example. It provides a connection-
oriented service that ensures that data arrive in the appropriate order, and it uses
an acknowledgment protocol to ensure that packets arrive. Because many higher-
level services are built on top of TCP, the basic protocol is often referred to as
TCP/IP.

Figure 8.21 shows the relationships between IP and higher-level Internet ser-
vices. Using IP as the foundation,TCP is used to provide File Transport Protocol
for batch file transfers, Hypertext Transport Protocol (HTTP) for World Wide
Web service, Simple Mail Transfer Protocol for email, and Telnet for virtual
terminals. A separate transport protocol, User Datagram Protocol , is used as

8.4 Internet-Enabled Systems 419

FTP HTTP

TCP

IP

UDP

Telnet SNMPSMTP

FIGURE 8.21

The Internet service stack.

the basis for the network management services provided by the Simple Network
Management Protocol .

8.4.2 Internet Applications
The Internet provides a standard way for an embedded system to act in concert with
other devices and with users, such as:

■ One of the earliest Internet-enabled embedded systems was the laser printer.
High-end laser printers often use IP to receive print jobs from host machines.

■ Portable Internet devices can display Web pages, read email, and synchronize
calendar information with remote computers.

■ A home control system allows the homeowner to remotely monitor and
control home cameras, lights, and so on.

Although there are higher-level services that provide more time-sensitive delivery
mechanisms for the Internet, the basic incarnation of the Internet is not well suited
to hard real-time operations. However, IP is a very good way to let the embed-
ded system talk to other systems. IP provides a way for both special-purpose and
standard programs (such as Web browsers) to talk to the embedded system. This
non–real-time interaction can be used to monitor the system, set its configuration,
and interact with it.

As seen in Section 8.4.1, the Internet provides a wide range of services built on
top of IP. Since code size is an important issue in many embedded systems, one
architectural decision that must be made is to determine which Internet services
will be needed by the system. This choice depends on the type of data service
required, such as connectionless versus connection oriented, streaming vs. non-
streaming, and so on. It also depends on the application code and its services:
does the system look to the rest of the Internet like a terminal, a Web server, or
something else?

Application Example 8.1 describes an Internet appliance that runs Java to provide
useful services.

420 CHAPTER 8 Networks

Application Example 8.1

An Internet video camera
Javacam [McD98] is an Internet-accessible video camera that was designed as a
demonstration of a Java Nanokernel. The Java Nanokernel is designed to require very little
memory. As a result, Javacam can provide an Internet interface with a National Semiconductor
NS486SXF microprocessor and 1.5 MB of memory.

Javacam was built from a Connectix QuickCam, a widely available, low-cost video camera
for PCs that can send and receive data on a standard PC parallel port.

The illustration below shows how QuickCam operates as a Java applet.

QuickCam
server

QuickCam applet

QuickCam

QuickCam

Web browser

HTTP
server

Java VM

486

Java
Nanokernel
device driver

From [McD98].

The HTTP server returns a page containing a piece of Java code that acts as an applet to
talk to the device. That Java code running on the Web browser requests an image from the
QuickCam server on the QuickCam. The QuickCam server, which executes on top of the Java
virtual machine and Java Nanokernel, grabs an image from the QuickCam, performs required
transformations, and returns the data to the applet running on the Web browser.

The QuickCam driver communicates with the camera over a parallel port. It provides three
basic functions: qc_initialize(); qc_send_command(), which sends commands to the camera;
and qc_take_picture(), which returns a picture. Those functions are implemented in C.

8.5 Vehicles as Networks 421

8.4.3 Internet Security
Connecting an embedded system to the Internet opens up the system to the same
sorts of attacks that are made on PCs and servers every day. However, attacks on
embedded systems can destroy not only information but also the physical devices
connected to the embedded processor. Dzung et al. [Dzu05] listed several example
attacks that caused significant damage:

■ A work infected the computer network of the CSX railway, causing all trains
in the Washington, DC area to be shut down for a half day.

■ A worm disabled the computer-based safety monitoring system at the Davis-
Besse nuclear power plant in Ohio.

■ A former consultant to a waste water plant in Australia used its computers to
release one million liters of sewage into the area waterways.

They point out that security can be enforced at all levels of the network stack.
General network security principles can be applied to Internet-enabled embedded
systems; various industrial standards also deal with measures specific to industrial
networks.

8.5 VEHICLES AS NETWORKS
Modern cars and planes rely on electronics to operate. About one-third of the total
cost of an airplane or car comes from its electronics. Electronic systems are used in
all aspects of the vehicle—safety-critical control,navigation and systems monitoring,
and passenger comfort.These electronic devices are connected using data networks.

Networks are used for a variety of purposes in vehicles, with varying require-
ments on reliability and performance:

■ Vehicle control (steering and brakes in cars,flight control surfaces in airplanes)
is the most critical operation in the vehicle since it determines vehicle stability.

■ Instruments for the driver or pilot must be reliable but often operate at higher
data rates than do the vehicle control systems.

■ Crew information systems may provide intercom functions, etc.

■ Passenger systems provide entertainment, Internet access, etc.

Early vehicle networks assigned a separate processor to each physical device.
Today,network designers tend to combine several functions onto one processor. In
cars, the engine controller is the prime candidate for system compute server. This
trend plays out more slowly in automobiles, but modern systems assign multiple
tasks to a CPU in order to reduce the number of processors and their associated
support hardware.

422 CHAPTER 8 Networks

Automotive and aviation electronics (avionics) are similar in many respects
but have some important differences.We will start with automotive electronics and
then go on to discuss avionics.

8.5.1 Automotive Networks
The CAN bus [Bos07] was designed for automotive electronics and was first used
in production cars in 1991. CAN is very widely used in cars as well as in other
applications.

The CAN bus uses bit-serial transmission. CAN runs at rates of 1 MB/s over a
twisted pair connection of 40 m. An optical link can also be used.The bus protocol
supports multiple masters on the bus. Many of the details of the CAN and I2C buses
are similar, but there are also significant differences.

As shown in Figure 8.22,each node in the CAN bus has its own electrical drivers
and receivers that connect the node to the bus in wired-AND fashion. In CAN
terminology,a logical 1 on the bus is called recessive and a logical 0 is dominant .
The driving circuits on the bus cause the bus to be pulled down to 0 if any node
on the bus pulls the bus down (making 0 dominant over 1). When all nodes are
transmitting 1s, the bus is said to be in the recessive state; when a node transmits a
0, the bus is in the dominant state. Data are sent on the network in packets known
as data frames.

Node Node

1 5 recessive

1

0 5 dominant

FIGURE 8.22

Physical and electrical organization of a CAN bus.

8.5 Vehicles as Networks 423

CAN is a synchronous bus—all transmitters must send at the same time for bus
arbitration to work. Nodes synchronize themselves to the bus by listening to the bit
transitions on the bus.The first bit of a data frame provides the first synchronization
opportunity in a frame. The nodes must also continue to synchronize themselves
against later transitions in each frame.

The format of a CAN data frame is shown in Figure 8.23. A data frame starts
with a 1 and ends with a string of seven zeroes. (There are at least three bit fields
between data frames.)The first field in the packet contains the packet’s destination
address and is known as the arbitration field. The destination identifier is 11 bits
long. The trailing remote transmission request (RTR) bit is set to 0 if the data
frame is used to request data from the device specified by the identifier. When
RTR �1, the packet is used to write data to the destination identifier. The control
field provides an identifier extension and a 4-bit length for the data field with a
1 in between. The data field is from 0 to 64 bytes, depending on the value given in
the control field. A cyclic redundancy check (CRC) is sent after the data field for
error detection. The acknowledge field is used to let the identifier signal whether
the frame was correctly received:The sender puts a recessive bit (1) in the ACK
slot of the acknowledge field; if the receiver detected an error, it forces the value
to a dominant (0) value. If the sender sees a 0 on the bus in the ACK slot, it knows
that it must retransmit. The ACK slot is followed by a single bit delimiter followed
by the end-of-frame field.

Control of the CAN bus is arbitrated using a technique known as Carrier Sense
Multiple Access with Arbitration on Message Priority (CSMA/AMP). (As seen in

St
ar

t

Arbitration field Control field Data field CRC field
Acknowledge
field

End of
frame

Identifier
Data
length
code

R
em

o
te

 tr
an

sm
is

si
o

n

re
q

u
es

t b
it

Id
en

ti
fi

er
 e

xt
en

si
o

n

V
al

u
e

5
 1

ACK
delimiter

ACK
slot

Value 5 1 Value 5 0

1 12 6 0 to 64 16 2 7

1 11111 1 4

FIGURE 8.23

The CAN data frame format.

424 CHAPTER 8 Networks

Section 8.2.2, Ethernet uses CSMA without AMP.) This method is similar to the I2C
bus’s arbitration method; like I2C, CAN encourages a data-push programming style.
Network nodes transmit synchronously,so they all start sending their identifier fields
at the same time. When a node hears a dominant bit in the identifier when it tries
to send a recessive bit, it stops transmitting. By the end of the arbitration field, only
one transmitter will be left. The identifier field acts as a priority identifier, with the
all-0 identifier having the highest priority.

A remote frame is used to request data from another node. The requestor sets
the RTR bit to 0 to specify a remote frame; it also specifies zero data bits. The node
specified in the identifier field will respond with a data frame that has the requested
value. Note that there is no way to send parameters in a remote frame—for example,
you cannot use an identifier to specify a device and provide a parameter to say which
data value you want from that device. Instead,each possible data request must have
its own identifier.

An error frame can be generated by any node that detects an error on the bus.
Upon detecting an error, a node interrupts the current transmission with an error
frame, which consists of an error flag field followed by an error delimiter field of
8 recessive bits. The error delimiter field allows the bus to return to the quiescent
state so that data frame transmission can resume.The bus also supports an overload
frame, which is a special error frame sent during the interframe quiescent period.
An overload frame signals that a node is overloaded and will not be able to handle
the next message. The node can delay the transmission of the next frame with up
to two overload frames in a row,hopefully giving it enough time to recover from its
overload.The CRC field can be used to check a message’s data field for correctness.

If a transmitting node does not receive an acknowledgment for a data frame,
it should retransmit the data frame until the frame is acknowledged. This action
corresponds to the data link layer in the OSI model.

Figure 8.24 shows the basic architecture of a typical CAN controller. The con-
troller implements the physical and data link layers; since CAN is a bus, it does not
need network layer services to establish end-to-end connections.The protocol con-
trol block is responsible for determining when to send messages, when a message
must be resent due to arbitration losses, and when a message should be received.

The FlexRay network has been designed as the next generation of system
buses for cars. FlexRay provides high data rates—up to 10 MB/s—with deterministic
communication. It is also designed to be fault-tolerant.

The Local Interconnect Network (LIN) bus [Bos07] was created to connect
components in a small area, such as a single door. The physical medium is a single
wire that provides data rates of up to 20 KB/s for up to 16 bus subscribers. All
transactions are initiated by the master and responded to by a frame. The software
for the network is often generated from a LIN description file that describes the
network subscribers, the signals to be generated, and the frames.

Several buses have come into use for passenger entertainment. Bluetooth is
becoming the standard mechanism for cars to interact with consumer electronics
devices such as audio players or phones. The Media Oriented Systems Transport

8.5 Vehicles as Networks 425

Status/control
registers

Receive
buffer

Message
objectsB

u
s

in
te

rf
ac

e
Protocol
controller

Host
interfaceCAN

bus

Host

FIGURE 8.24

Architecture of a CAN controller.

(MOST) bus [Bos07] was designed for entertainment and multimedia information.
The basic MOST bus runs at 24.8 MB/s and is known as MOST 25; 50 and 150 MB/s
versions have also been developed. MOST can support up to 64 devices. The
network is organized as a ring.

Data transmission is divided into channels. A control channel transfers con-
trol and system management data. Synchronous channels are used to transmit
multimedia data; MOST 25 provides up to 15 audio channels. An asynchronous
channel provides high data rates but without the quality-of-service guarantees of
the synchronous channels.

8.5.2 Avionics
The most fundamental difference between avionics and automotive electronics is
certification. Anything that is permanently attached to the aircraft must be certi-
fied. The certification process for production aircraft is twofold: first, the design is
certified in a process known as type certification; then, the manufacture of each
aircraft is certified during production.

The certification process is a prime reason why avionics architectures are
more conservative than automotive electronics systems. The traditional architec-
ture [Hel04] for an avionics system has a separate unit for each function: artificial
horizon,engine control,flight surfaces,etc.These units are known as line replace-
able units and are designed to be easily plugged and unplugged into the aircraft
during maintenance.

A more sophisticated system is bus-based. The Boeing 777 avionics [Mor07], for
example, is built from a series of racks. Each rack is a set of core processor modules
(CPMs), I/O modules, and power supplies. The CPMs may implement one or more
functions. A bus known as SAFEbus connects the modules. Cabinets are connected
together using serial bus known as ARINC 629.

426 CHAPTER 8 Networks

A more distributed approach to avionics is the federated network. In this
architecture,a function or several functions have their own network.The networks
share data as necessary for the interaction of these functions. A federated architec-
ture is designed so that a failure in one network will not interfere with the operation
of the other networks.

The Genesis Platform [Wal07] is a next-generation architecture for avionics and
safety-critical systems; it is used on the Boeing 787. Unlike federated architectures,
it does not require a one-to-one correspondence between application groups and
network units. In contrast, Genesis defines a virtual system for the avionics appli-
cations that are then mapped onto a physical network that may have a different
topology.

8.6 SENSOR NETWORKS
Sensor networks are large-scale embedded systems that may contain tens of thou-
sands or millions of nodes. Sensors are used in a wide variety of applications:
manufacturing plants, weather reporting, etc. Traditional sensor systems use cus-
tom wiring to bring data to centralized computers for analysis. Sensor networks
use standardized platforms to transport data either for analysis at a server or for
computing directly in the network.

Sensor networks generally rely on battery-operated nodes and wireless data com-
munication. Eliminating wires for power and data allows sensors to be deployed in
environments that are not feasible for traditional sensors.

However, this combination of components presents many challenges. Because
batteries have only a limited energy capacity, that energy must be rigorously
conserved. But wireless communication requires much more energy than does
communication by wire. In addition to traditional energy conservation techniques,
we must develop new networking methods that conserve energy in wireless
environments.

The Internet is designed to be resilient, but it is still too structured for many
sensor network applications. Sensor networks must be installed by non-computer
scientists. The nodes in the network are physically distributed and nodes may fail
or be introduced to the network over time. Because they do not use wires, the
structure of the connections between nodes is not designed in advance.

An ad hoc network organizes itself without intervention of a network admin-
istrator. Ad hoc networks allow users to distribute a set of wireless sensor network
nodes and let the nodes organize their communication links for themselves.

An ad hoc network must be able to do several things:

■ Nodes must be able to declare themselves to be part of the network and to
determine what other nodes are in the network. Admission control policies
determine how nodes can be admitted.

8.7 Design Example: Elevator Controller 427

■ The network must determine how to route data. Sensor networks generally
establish a network structure,such as a grid,based upon the relative locations
of the network nodes. Data are then routed based upon these selected
communication paths.

■ When nodes enter or leave the network, the network must update its
configuration and routing.

In order to support these network operations, nodes in the network must be
fairly capable:

■ The node must be able to turn its radio on and off quickly and efficiently. Power
wasted during power-up and power-down is not available for operating the
network.

■ The radios in the nodes may need to operate at several different power levels
to avoid interference and save battery power. They may also need to operate
at several frequencies to avoid interference.

■ The node must be able to buffer network traffic and make routing decisions.

Power management and networking are intimately related. The power profiles
of sensor nodes help determine the characteristics of networking protocols.

The sensor node’s radio consumes much more energy than its processor.
Transmitting 1 bit of information takes roughly 100 times more energy than an
arithmetic operation. As a result, nodes can save energy by spending computing
cycles to determine when to turn their radios on and off.

Furthermore, sensor node radios spend more energy receiving than transmit-
ting. In most radio applications, transmitting is assumed to take more energy than
receiving. However, sensor nodes spend most of their time listening. Therefore,
power management protocols must take into account the energy consumption of
reception.

A basic sensor network moves data from sensors to servers for processing. This
approach makes sense for low data rate applications. However, higher data rate
applications like audio and video benefit from performing at least some of the data
analysis in network nodes.

Because communication costs more energy than computation, in-network pro-
cessing saves energy if it reduces the volume of data transmitted over the network.
In many cases,we can generate abstractions of the raw data that can be transmitted
at much less cost. However,processing may require trading data between nodes, so
the net amount of communication must be carefully considered.

8.7 ELEVATOR CONTROLLER
We willuse the principles of distributed system design by designing an elevator

Design Example

controller. The components are physically distributed among the elevators and

428 CHAPTER 8 Networks

floors of the building, and the system must meet both hard (making sure the
elevator stops at the right point) and soft (responding to requests for elevators)
deadlines.

8.7.1 Theory of Operation and Requirements
We design a multiple elevator system to increase the challenge. The configuration
of a bank of elevators is shown in Figure 8.25.The elevator car is the unit that runs
up and down the hoistway (also known as the shaft) carrying passengers; we will
use N to represent the number of hoistways. Each car runs in a hoistway and can
stop at any of F floors. (For convenience we will number the floors 1 through F ,

although some of the elevator doors may in fact be in the basement.) Every elevator
car has a car control panel that allows the passengers to select floors to stop at.
Each floor has a single floor control panel that calls for an elevator. Each floor also
has a set of displays to show the current state of the elevator systems.

The user interface consists of the elevator control panels, floor control panels,
and displays.The car control panels have F buttons to request the floors plus an
emergency stop button. Each floor control panel has an up button and a down
button that request an elevator going in the chosen direction. There is one display

Hoistway 1 Hoistway N

Floor F

Floor 1

Elevator
control
panels

Display

. . .

FIGURE 8.25

A bank of elevators.

8.7 Design Example: Elevator Controller 429

per hoistway on each floor. Each display has an up light and a down light; if the
elevator is idle,neither light is on.The displays for a hoistway always show the same
state on all floors.

The elevator control system consists of two types of components. First, a single
master controller governs the overall behavior of all elevators, and second, on each
elevator a car controller runs everything that must be done within the car. The
car controller must of course sense button presses on the car control panel, but it
must also sense the current position of the elevator. As shown in Figure 8.26, the
car controller reads two sets of indicators on the wall of the elevator hoistway to
sense position. The coarse indicators run the entire length of the hoistway and a
sensor determines when the elevator passes each one. Fine indicators are located
only around the stopping point for each floor. There are 2S � 1 fine indicators on
each floor, one at the exact stopping point and S on each side of it. The sensor also
reads fine indicators; it puts out separate signals for the coarse and fine indicators.
The elevator system can stop at the proper position by counting coarse and fine
indicators.

The elevator’s movement is controlled by two motor control inputs: one for
up and one for down. When both are disabled, the elevator does not move.
The system should not enable both up and down on a single hoistway simul-
taneously.

The master controller has several tasks—it must read inputs from the floor control
panels, send signals to the lights on the floor displays, read floor requests from the
car controllers, and take inputs from the car sensors. Most importantly, it must tell
the elevators when to move and when to stop. It must also schedule the elevators
to efficiently answer passenger requests.

The basic requirements for the elevator system follow.

Name Elevator system

Inputs F floor control inputs, N position sensors, N car
control panels, one master control panel

Outputs F displays, N motor controllers

Functions Responds to floor, car, and master control panels;
operates cars safely

Performance Control of elevators is time critical

Manufacturing cost Cost of electronics is small compared to mechanical
systems

Power Not important

Physical size and weight Cabling is the major concern

In this design,we are much more aware of the surrounding mechanical elements
than we have been in previous examples.The electronics are clearly a small part of

430 CHAPTER 8 Networks

Position
sensor

Coarse
indicators

Fine
indicators

FIGURE 8.26

Sensing elevator position.

Coarse-sensor* Master-control-panel*

Car-control-panel*

Car

Floor

Controller

1

1
1

1

1

1

F(2S 1 1)

1

1

1

1

N

F

F

1

N

Motor*

Floor-control-panel*

Fine-sensor*

FIGURE 8.27

Basic class diagram for the elevator system.

the cost and bulk of the elevator system. But because the elevators are controlled
by the computers, the proper operation of the embedded hardware and software is
very important.

8.7.2 Specification
The basic class diagram for the elevator system is shown in Figure 8.27.This diagram
concentrates on the relationships among the classes and the number of objects of
each type that the system requires.

The physical interface classes are defined in more detail in Figure 8.28. We have
used inheritance to define the sensors,even though these classes represent physical

8.7 Design Example: Elevator Controller 431

Sensor*

hit : boolean

Coarse-sensor* Fine-sensor*

Motor*

speed : {off, slow, fast}

Master-control-panel*

Floor-control-panel*

up, down : boolean

Car-control-panel*

floors[1..F] : boolean

emergency-stop : boolean

open-door, close-door :
boolean

master-stop()

elevator-positions[1..H][1..F] : boolean
master-stop-indicator : boolean

FIGURE 8.28

Physical interface classes for the elevator system.

objects.The only difference among the sensors to the elevator controller is whether
they indicate coarse or fine positions;other physical distinctions among the sensors
do not matter.

The Car and Floor classes, which describe the control panels on the floors and
in the cars,are shown in Figure 8.29.These classes define the basic attributes of the
car and floor control panels.

The Controller class is defined in Figure 8.30. This class defines attributes that
describe the state of the system,including where each car is and whether the system
has made an emergency stop. It also defines several behaviors, such as an operate
behavior and behaviors to check the state of parts of the system.

8.7.3 Architecture
Computation and I/O occur at three major locations in this system:the floor control
panels/displays,the elevator cabs,and the system controller. Let’s consider the basic

432 CHAPTER 8 Networks

Car

request lights[1..F] : integer
current-floor : integer

Floor

up-light, down-light : boolean

FIGURE 8.29

The Car and Floor classes.

Controller

scan-cars()
scan-floors()
scan-master-panel()
operate()

car-floor[1..H] : integer
emergency-stop[1..H] : boolean

FIGURE 8.30

The Controller class for the elevator system.

operation of each of these subsystems one at a time and then go back and design
the network that connects them.

The floor control panels and displays are relatively simple since they have no hard
real-time requirements. Each one takes a set of inputs for the up/down indicators
and lights the appropriate lights. Each also watches for button events and sends the
results to the system controller. We can use a simple microcontroller for all these
tasks.

The cab controller must read the cab’s buttons and send events to the system
controller. It must also read the sensor inputs and send them to the system con-
troller. Reading the sensors is a hard real-time task—proper operation of the elevator
requires that the cab controller not miss any of the indicators. We have to decide
whether to use one or two PEs in the cab.A conservative design would use separate
PEs for the button panel and the sensor. We could also use a single processor to
handle both the buttons and the sensor.

The system controller must take inputs from all these units. Its control of the
elevators has both hard and soft real-time aspects: It must constantly monitor all
moving elevators to be sure they stop properly, as well as choose which elevator to
dispatch to a request.

8.7 Design Example: Elevator Controller 433

System controller

Car
ctrl

Car
ctrl

Elevator
control
panels

Display

FIGURE 8.31

The networks in the elevator.

Figure 8.31 shows the set of networks we will use in the system.The floor control
panels/displays are connected along a single bus network. Each elevator car has its
own point-to-point link with the system controller.

8.7.4 Testing
The simplest way to test the controllers is to build an elevator simulator using an
FPGA. We can easily program an FPGA to simulate several elevators by keeping
registers for the current position of each elevator and using counters to control
how often the elevators change state. Using an FPGA-based elevator simulator pro-
vides good motivation for this example because we can design the FPGA to indicate
when an elevator has crashed through the floor or the ceiling of its shaft. Working
with a real-time-oriented elevator simulator helps illustrate the challenges presented
by real-time control. We can use a serial link from a PC to provide button inputs, or
we can wire up panels of buttons and indicators ourselves.

434 CHAPTER 8 Networks

SUMMARY
We often need or want to build an embedded system out of a network of con-
nected processors. The uses of distributed embedded systems vary greatly, ranging
from the real-time networks in an automobile to Internet-enabled information
appliances. There are a great many networks that we can choose from to build
embedded systems based on constraints of cost, overall throughput, and real-time
behavior.

What We Learned

■ Distributed embedded systems often make sense for cost, performance, and
physical reasons.

■ The OSI layer model breaks down the structure of a network into seven layers.

■ A large number of networks,many with very different characteristics,are used
in embedded systems.

■ Performance analysis must take into account network delay.

■ The Internet is not ideally suited to hard real-time operation,but it can be very
useful in building a user interface and in simplifying the integration of systems
with multiple nodes.

■ Sensor networks use ad hoc networking techniques to simplify installation
and operation.

FURTHER READING
Kopetz [Kop97] provides a thorough introduction to the design of distributed
embedded systems. Stallings [Sta97A] provides a good introduction to data net-
working. A variety of manufacturers make components for interfacing to popular
networks and microprocessors with built-in network interfaces. The book by
Robert Bosch GmbH [Bos07] discusses automotive electronics in detail.The Digital
Aviation Handbook [Spi07] describes the avionics systems of several aircraft.Wire-
less sensor networks are discussed in books by Karl and Willig [Kar06] and Zhao
and Guibas [Zha04].

QUESTIONS
Q8-1 Describe an I2C bus at the following OSI-compliant levels of detail:

a. physical,

b. data link,

Questions 435

c. network, and

d. transport.

Q8-2 Describe a 10Base-T Ethernet at the following OSI-compliant levels of detail:

a. physical,

b. data link,

c. network, and

d. transport.

Q8-3 Show the order in which requests would be answered in the timeline
below,assuming that each takes one time unit to satisfy,under the following
arbitration schemes:

a. fixed: a highest, b middle, c lowest, and

b. round robin.

0 5 10 15 20 25 30 35

c (t � 0) a,b (t � 5) a,c (t � 15) a,b (t � 25) a,b,c (t � 30)c (t � 6) b (t � 16)

Q8-4 Answer question Q8-3, assuming that each request takes two time units to
satisfy.

Q8-5 Answer question Q8-3, using the arrival times below and a request satisfac-
tion time of two time units.

0 5 10 15 20 25 30

c (t � 7) a (t � 8) c(t � 10) a (t � 20)a,b,c (t � 0) a,b,c (t � 15) b,c (t � 22)

Q8-6 Describe how an IP packet may be sent from a client on one Ethernet
to a client on a second Ethernet. The two Ethernets are connected by
a router.

Q8-7 What services would the Javacam of Application Example 8.1 require at the
following levels of the OSI model:

a. application,

b. presentation,

c. session, and

d. transport.

Q8-8 Using the methodology of Example 8.2, plot both the transmission time
for 1 byte as a function of the I2C clock speed and the microcontroller
overhead as a function of the number of instructions executed. Determine
the values for bus clock speed and the number of instructions at which the
transmission delay equals the overhead.

436 CHAPTER 8 Networks

Q8-9 What is the longest time that a processing element may have to wait
between two successive data transmissions on a round-robin arbitrated
bus? Assume that each data transmission requires one time unit.

Q8-10 How can an automotive network ensure that safety-critical components are
not starved of bus access—that they are guaranteed to be able to transmit
within a certain amount of time?

Q8-11 Give examples of the component networks in a federated network for an
automobile.

Q8-12 Give an example of a simple protocol that would allow sensor nodes
in a sensor network to determine the other nodes with which they can
communicate.

LAB EXERCISES
L8-1 Build an experimental setup that lets you monitor messages on an embedded

network.

L8-2 Measure the effects of collisions on an Ethernet (doing so, of course, on a
network where you will not disturb other users). Plot the amount of time
required to successfully deliver a message as a function of network load.

CHAPTER

9System Design Techniques
■ A deeper look into design methodologies, requirements,

specification, and system analysis.

■ Formal and informal methods for system specification.

■ Quality assurance.

INTRODUCTION
In this chapter we consider the techniques required to create complex embedded
systems. Thus far, our design examples have been small so that important concepts
can be conveyed relatively simply. However, most real embedded system designs
are inherently complex, given that their functional specifications are rich and they
must obey multiple other requirements on cost, performance, and so on. We need
methodologies to help guide our design decisions when designing large systems.

In the next section we look at design methodologies in more detail. Section 9.2
studies requirements analysis, which captures informal descriptions of what a sys-
tem must do, while Section 9.3 considers techniques for more formally specifying
system functionality. Section 9.4 focuses on details of system analysis methodolo-
gies. Section 9.5 discusses the topic of quality assurance (QA), which must be
considered throughout the design process to ensure a high-quality design.

9.1 DESIGN METHODOLOGIES
This section considers the complete design methodology—a design process—
for embedded computing systems. We will start with the rationale for design
methodologies, then look at several different methodologies.

9.1.1 Why Design Methodologies?
Process is important because without it, we can’t reliably deliver the products we
want to create. Thinking about the sequence of steps necessary to build some-
thing may seem superfluous. But the fact is that everyone has their own design
process, even if they don’t articulate it. If you are designing embedded systems
in your basement by yourself, having your own work habits is fine. But when

437

438 CHAPTER 9 System Design Techniques

several people work together on a project, they need to agree on who will do
things and how they will get done. Being explicit about process is important
when people work together. Therefore, since many embedded computing systems
are too complex to be designed and built by one person, we have to think about
design processes.

The obvious goal of a design process is to create a product that does some-
thing useful. Typical specifications for a product will include functionality (e.g.,
cell phone), manufacturing cost (must have a retail price below $200), perfor-
mance (must power up within 3 s), power consumption (must run for 12 h on
two AA batteries), or other properties. Of course, a design process has several
important goals beyond function,performance,and power.Three of these goals are
summarized below.

■ Time-to-market: Customers always want new features. The product that
comes out first can win the market, even setting customer preferences for
future generations of the product. The profitable market life for some prod-
ucts is 3–6 months—if you are 3 months late, you will never make money. In
some categories, the competition is against the calendar,not just competitors.
Calculators, for example, are disproportionately sold just before school starts
in the fall. If you miss your market window,you have to wait a year for another
sales season.

■ Design cost: Many consumer products are very cost sensitive. Industrial
buyers are also increasingly concerned about cost.The costs of designing the
system are distinct from manufacturing cost—the cost of engineers’ salaries,
computers used in design, and so on must be spread across the units sold. In
some cases, only one or a few copies of an embedded system may be built,
so design costs can dominate manufacturing costs. Design costs can also be
important for high-volume consumer devices when time-to-market pressures
cause teams to swell in size.

■ Quality: Customers not only want their products fast and cheap, they also
want them to be right. A design methodology that cranks out shoddy prod-
ucts will soon be forced out of the marketplace. Correctness, reliability, and
usability must be explicitly addressed from the beginning of the design job to
obtain a high-quality product at the end.

Processes evolve over time. They change due to external and internal forces.
Customers may change, requirements change, products change, and available com-
ponents change. Internally, people learn how to do things better, people move on
to other projects and others come in, and companies are bought and sold to merge
and shape corporate cultures.

Software engineers have spent a great deal of time thinking about software
design processes. Much of this thinking has been motivated by mainframe software
such as databases. But embedded applications have also inspired some important
thinking about software design processes.

9.1 Design Methodologies 439

A good methodology is critical to building systems that work properly. Delivering
buggy systems to customers always causes dissatisfaction. But in some applications,
such as medical and automotive systems, bugs create serious safety problems that
can endanger the lives of users. We discuss quality in more detail in Section 9.5.
As an introduction, Application Example 9.1 describes problems that led to the
loss of an unmanned Martian space probe.

Application Example 9.1

Loss of the Mars Climate Observer
In September 1999, the Mars Climate Observer, an unmanned U.S. spacecraft designed to
study Mars, was lost—it most likely exploded as it heated up in the atmosphere of Mars
after approaching the planet too closely. The spacecraft came too close to Mars because
of a series of problems, according to an analysis by IEEE Spectrum and contributing editor
James Oberg [Obe99]. From an embedded systems perspective, the first problem is best
classified as a requirements problem. The contractors who built the spacecraft at Lockheed
Martin calculated values for use by the flight controllers at the Jet Propulsion Laboratory (JPL).
JPL did not specify the physical units to be used, but they expected them to be in Newtons.
The Lockheed Martin engineers returned values in units of pound force. This discrepancy
resulted in trajectory adjustments being 4.45 times larger than they should have been.
The error was not caught by a software configuration process nor was it caught by man-
ual inspections. Although there were concerns about the spacecraft’s trajectory, errors in the
calculation of the spacecraft’s position were not caught in time.

9.1.2 Design Flows
A design flow is a sequence of steps to be followed during a design. Some of the
steps can be performed by tools,such as compilers or CAD systems;other steps can
be performed by hand. In this section we look at the basic characteristics of design
flows.

Figure 9.1 shows the waterfall model introduced by Royce [Dav90], the first
model proposed for the software development process. The waterfall develop-
ment model consists of five major phases: requirements analysis determines the
basic characteristics of the system; architecture design decomposes the function-
ality into major components; coding implements the pieces and integrates them;
testing uncovers bugs; and maintenance entails deployment in the field, bug fixes,
and upgrades. The waterfall model gets its name from the largely one-way flow of
work and information from higher levels of abstraction to more detailed design
steps (with a limited amount of feedback to the next-higher level of abstraction).
Although top–down design is ideal since it implies good foreknowledge of the
implementation during early design phases, most designs are clearly not quite so
top–down. Most design projects entail experimentation and changes that require
bottom–up feedback. As a result, the waterfall model is today cited as an unrealistic

440 CHAPTER 9 System Design Techniques

Requirements

Architecture

Coding

Testing

Maintenance

FIGURE 9.1

The waterfall model of software development.

System feasibility

Specification

Initial system

Enhanced system

System life cycle

Design

Requirements

Test

Prototype

FIGURE 9.2

The spiral model of software design.

design process. However, it is important to know what the waterfall model is to be
able to understand and how others are reacting against it.

Figure 9.2 illustrates an alternative model of software development called the
spiral model [Boe87]. While the waterfall model assumes that the system is built
once in its entirety, the spiral model assumes that several versions of the system

9.1 Design Methodologies 441

Specify

Architect

Design

Initial system

Build

Test

Specify

Architect

Design

Refined system

Build

Test

. . .

FIGURE 9.3

A successive refinement development model.

will be built. Early systems will be simple mock-ups constructed to aid designers’
intuition and to build experience with the system. As design progresses,more com-
plex systems will be constructed. At each level of design, the designers go through
requirements,construction,and testing phases.At later stages when more complete
versions of the system are constructed, each phase requires more work, widening
the design spiral. This successive refinement approach helps the designers under-
stand the system they are working on through a series of design cycles. The first
cycles at the top of the spiral are very small and short, while the final cycles at
the spiral’s bottom add detail learned from the earlier cycles of the spiral. The spi-
ral model is more realistic than the waterfall model because multiple iterations
are often necessary to add enough detail to complete a design. However, a spiral
methodology with too many spirals may take too long when design time is a major
requirement.

Figure 9.3 shows a successive refinement design methodology. In this
approach, the system is built several times. A first system is used as a rough proto-
type, and successive models of the system are further refined. This methodology
makes sense when you are relatively unfamiliar with the application domain for
which you are building the system. Refining the system by building several increas-
ingly complex systems allows you to test out architecture and design techniques.
The various iterations may also be only partially completed; for example,continuing
an initial system only through the detailed design phase may teach you enough to
help you avoid many mistakes in a second design iteration that is carried through to
completion.

Embedded computing systems often involve the design of hardware as well
as software. Even if you aren’t designing a board, you may be selecting boards
and plugging together multiple hardware components as well as writing code.
Figure 9.4 shows a design methodology for a combined hardware/software project.
Front-end activities such as specification and architecture simultaneously consider

442 CHAPTER 9 System Design Techniques

Architecture

Integration

Hardware
design

Software
design

Requirements and specification

System test

FIGURE 9.4

A simple hardware/software design methodology.

hardware and software aspects. Similarly,back-end integration and testing consider
the entire system. In the middle, however, development of hardware and software
components can go on relatively independently—while testing of one will require
stubs of the other, most of the hardware and software work can proceed relatively
independently.

In fact, many complex embedded systems are themselves built of smaller
designs. The complete system may require the design of significant software com-
ponents, custom logic, and so on, and these in turn may be built from smaller
components that need to be designed.The design flow follows the levels of abstrac-
tion in the system, from complete system design flows at the most abstract to
design flows for individual components. The design flow for these complex sys-
tems resembles the flow shown in Figure 9.5. The implementation phase of a flow
is itself a complete flow from specification through testing. In such a large project,
each flow will probably be handled by separate people or teams. The teams must
rely on each other’s results. The component teams take their requirements from
the team handling the next higher level of abstraction, and the higher-level team
relies on the quality of design and testing performed by the component team. Good
communication is vital in such large projects.

When designing a large system along with many people, it is easy to lose track
of the complete design flow and have each designer take a narrow view of his or
her role in the design flow. Concurrent engineering attempts to take a broader
approach and optimize the total flow. Reduced design time is an important goal
for concurrent engineering, but it can help with any aspect of the design that
cuts across the design flow, such as reliability, performance, power consumption,
and so on. It tries to eliminate “over-the-wall” design steps, in which one designer

9.1 Design Methodologies 443

Requirements
and

specification Specification Specification

Architecture
Hardware architecture Software architecture

Hardware
design

Software
design

Detailed
design

Integration

Integration
Integration

System test
Test Test

Most abstract
Moderately abstract Moderately abstract

Another
design
cycle

Module
design

Least
abstract

Another
design
cycle

Least
abstract

FIGURE 9.5

A hierarchical design flow for an embedded system.

performs an isolated task and then throws the result over the wall to the next
designer, with little interaction between the two. In particular, reaping the most
benefits from concurrent engineering usually requires eliminating the wall between
design and manufacturing. Concurrent engineering efforts are comprised of several
elements:

■ Cross-functional teams include members from various disciplines involved
in the process, including manufacturing, hardware and software design, mar-
keting, and so forth.

■ Concurrent product realization process activities are at the heart of con-
current engineering. Doing several things at once, such as designing various
subsystems simultaneously, is critical to reducing design time.

■ Incremental information sharing and use helps minimize the chance that
concurrent product realization will lead to surprises. As soon as new infor-
mation becomes available, it is shared and integrated into the design. Cross-
functional teams are important to the effective sharing of information in
a timely fashion.

■ Integrated project management ensures that someone is responsible for
the entire project, and that responsibility is not abdicated once one aspect
of the work is done.

444 CHAPTER 9 System Design Techniques

■ Early and continual supplier involvement helps make the best use of
suppliers’ capabilities.

■ Early and continual customer focus helps ensure that the product best
meets customers’ needs.

Example 9.1 describes the experiences of a telephone system design organiza-
tion with concurrent engineering.

Example 9.1

Concurrent engineering applied to telephone systems
A group at AT&T applied concurrent engineering to the design of PBXs (telephone switching
systems) [Gat94]. The company had a large existing organization and methodology for design-
ing PBXs; their goal was to re-engineer their process to reduce design time and make other
improvements to the end product. They used the seven-step process described below.

1. Benchmarking: They compared themselves to competitors and found that it took them
30% longer to introduce a new product than their best competitors. Based on this
study, they decided to shoot for a 40% reduction in design time.

2. Breakthrough improvement: Next, they identified the factors that would influence their
effort. Three major factors were identified: increased partnership between design and
manufacturing; continued existence of the basic organization of design labs and manu-
facturing; and support of managers at least two levels above the working level. As a
result, three groups were established to help manage the effort. A steering committee
was formed by midlevel managers to provide feedback on the project. A project office
was formed by an engineering manager and an operations analyst from the AT&T
internal consulting organization. Finally, a core team of engineers and analysts was
formed to make things happen.

3. Characterization of the current process: The core team built flowcharts and
used other techniques to understand the current product development process.
The existing design and manufacturing process resembled the figure below. The
core team identified several root causes of delays that had to be remedied.
First, too many design and manufacturing tasks were performed sequentially. Sec-
ond, groups tended to focus on intermediate milestones related to their narrow job
descriptions, rather than trying to take into account the effects of their decisions on
other aspects of the development process. Third, too much time was spent waiting in
queues—jobs were handed off from one person to another very frequently. In many
cases, the recipient of a set of jobs didn’t know how to best prioritize the incoming
tasks. Fixing this problem was deemed to be fundamentally a managerial problem, not
a technical one. Finally, the team found that too many groups had their own design
databases, creating redundant data that had to be maintained and synchronized.

4. Create the target process: Based on its studies, the core team created a model for the
new development process, which is reproduced below.

9.1 Design Methodologies 445

C
o

n
ce

p
t

d
ev

el
o

p
m

en
t

Design project
management

Manufacturing
project management

Model
construction

Physical
design

Design/
capture

Material
management

Order
engineering

Pilot
shopD

es
ig

n
 tr

an
sf

er

Manufacturing
engineering

Production
shop

Material management

Order
engineering

Manufacturing
engineering

Design/
capture

Model
construction

Physical
design

Production
shop

Project management

C
o

n
ce

p
t

d
ev

el
o

p
m

en
t

5. Verify the new process: The team undertook a pilot product development project to
test the new process. The process was found to be basically sound. Some challenges
were identified; for example, in the sequential project the design of circuit boards
took longer than that of the mechanical enclosures, while in the new process the

446 CHAPTER 9 System Design Techniques

enclosures ended up taking longer, pointing out the need to start designing them
earlier.

6. Implement across the product line: After the pilot project, the new methodology
was rolled out across the product lines. This activity required training of person-
nel, documentation of the new standards and procedures, and improvements to
information systems.

7. Measure results and improve: The performance of the new design flow was measured.
The team found that product development time had been reduced from 18–30 months
to 11 months.

9.2 REQUIREMENTS ANALYSIS
Before designing a system, we need to know what we are designing. The terms
“requirements”and “specifications”are used in a variety of ways—some people use
them as synonyms, while others use them as distinct phases. We use them to mean
related but distinct steps in the design process. Requirements are informal descrip-
tions of what the customer wants,while specifications are more detailed,precise,
and consistent descriptions of the system that can be used to create the architec-
ture. Both requirements and specifications are, however, directed to the outward
behavior of the system, not its internal structure.

The overall goal of creating a requirements document is effective communication
between the customers and the designers. The designers should know what they
are expected to design for the customers; the customers, whether they are known
in advance or represented by marketing, should understand what they will get.

We have two types of requirements: functional and nonfunctional . A func-
tional requirement states what the system must do, such as compute an FFT.
A nonfunctional requirement can be any number of other attributes, including
physical size, cost, power consumption, design time, reliability, and so on.

A good set of requirements should meet several tests [Dav90]:

■ Correctness: The requirements should not mistakenly describe what the
customer wants. Part of correctness is avoiding over-requiring—the require-
ments should not add conditions that are not really necessary.

■ Unambiguousness: The requirements document should be clear and have
only one plain language interpretation.

■ Completeness: All requirements should be included.

■ Verifiability: There should be a cost-effective way to ensure that each require-
ment is satisfied in the final product. For example, a requirement that the
system package be “attractive” would be hard to verify without some agreed
upon definition of attractiveness.

9.3 Specifications 447

■ Consistency: One requirement should not contradict another requirement.

■ Modifiability: The requirements document should be structured so that it
can be modified to meet changing requirements without losing consistency,
verifiability, and so forth.

■ Traceability: Each requirement should be traceable in the following ways:

—We should be able to trace backward from the requirements to know why
each requirement exists.

—We should also be able to trace forward from documents created before
the requirements (e.g., marketing memos) to understand how they relate
to the final requirements.

—We should be able to trace forward to understand how each requirement
is satisfied in the implementation.

—We should also be able to trace backward from the implementation to know
which requirements they were intended to satisfy.

How do you determine requirements? If the product is a continuation of a series,
then many of the requirements are well understood. But even in the most modest
upgrade, talking to the customer is valuable. In a large company, marketing or sales
departments may do most of the work of asking customers what they want,but a sur-
prising number of companies have designers talk directly with customers. Direct
customer contact gives the designer an unfiltered sample of what the customer
says. It also helps build empathy with the customer,which often pays off in cleaner,
easier-to-use customer interfaces.Talking to the customer may also include conduct-
ing surveys,organizing focus groups,or asking selected customers to test a mock-up
or prototype.

9.3 SPECIFICATIONS
In this section we take a look at some advanced techniques for specification and
how they can be used.

9.3.1 Control-Oriented Specification Languages
We have already seen how to use state machines to specify control in UML.
An example of a widely used state machine specification language is the SDL
language [Roc82], which was developed by the communications industry for
specifying communication protocols, telephone systems, and so forth. As illus-
trated in Figure 9.6, SDL specifications include states, actions, and both condi-
tional and unconditional transitions between states. SDL is an event-oriented state

448 CHAPTER 9 System Design Techniques

State

Input

Output

Task

Decision

Save

Language symbols Graphical specification

Telephone
on-hook

Caller goes
off-hook

Caller gets
dial tone

Dial tone

FIGURE 9.6

The SDL specification language.

machine model since transitions between states are caused by internal and external
events.

Other techniques can be used to eliminate clutter and clarify the important
structure of a state-based specification.The Statechart [Har87] is one well-known
technique for state-based specification that introduced some important concepts.
The Statechart notation uses an event-driven model. Statecharts allow states to be
grouped together to show common functionality. There are two basic groupings:
OR and AND. Figure 9.7 shows an example of an OR state by comparing a tradi-
tional state transition diagram with a Statechart described via an OR state.The state
machine specifies that the machine goes to state s4 from any of s1, s2, or s3 when
they receive the input i2. The Statechart denotes this commonality by drawing an
OR state around s1, s2,and s3 (the name of the OR state is given in the small box at
the top of the state). A single transition out of the OR state s123 specifies that the
machine goes into state s4 when it receives the i2 input while in any state included
in s123.The OR state still allows interesting transitions between its member states.
There can be multiple ways to get into s123 (via s1 or s2), and there can be transi-
tions between states within the OR state (such as from s1 to s3 or s2 to s3).The OR
state is simply a tool for specifying some of the transitions relating to these states.

9.3 Specifications 449

i1

i1

i1s123

s1

s2

s3

s4
s4

i2

i2

i2
i2

i1

Traditional

s1

s2

s3

Statechart

FIGURE 9.7

An OR state in Statecharts.

s2-3

s1-3

s2-4

s5

s1-4 s1

s2

s5

s3

s4

c
d

b a
b a d c

d

b a

c

r
r

r

r

sa sb

Traditional Statechart

sab

FIGURE 9.8

An AND state in Statecharts.

Figure 9.8 shows an example of an AND state specified in Statechart notation
as compared to the equivalent in the traditional state machine model. In the tradi-
tional model, there are numerous transitions between the states; there is also one
entry point into this cluster of states and one exit transition out of the cluster.

450 CHAPTER 9 System Design Techniques

In the Statechart, the AND state sab is decomposed into two components, sa
and sb. When the machine enters the AND state, it simultaneously inhabits the state
s1 of component sa and the state s3 of component sb. We can think of the system’s
state as multidimensional. When it enters sab, knowing the complete state of the
machine requires examining both sa and sb.

The names of the states in the traditional state machine reveal their relation-
ship to the AND state components. Thus, state s1-3 corresponds to the Statechart
machine having its sa component in s1 and its sb component in s3, and so forth.
We can exit this cluster of states to go to state s5 only when, in the traditional speci-
fication, we are in state s2-4 and receive input r. In the AND state, this corresponds
to sa in state s2, sb in state s4, and the machine receiving the r input while in this
composite state.Although the traditional and Statechart models describe the same
behavior,each component has only two states,and the relationships between these
states are much simpler to see.

Leveson et al. [Lev94] used a different format, the AND/OR table, to describe
similar relationships between states. An example AND/OR table and the Boolean
expression it describes are shown in Figure 9.9. The rows in the AND/OR table are
labeled with the basic variables in the expression. Each column corresponds to an
AND term in the expression. For example, the AND term (cond2 and not cond3)
is represented in the second column with a T for cond2, an F for cond3, and a
dash (don’t-care) for cond1; this corresponds to the fact that cond2 must be T and
cond3 F for the AND term to be true. We use the table to evaluate whether a given
condition holds in the system. The current states of the variables are compared
to the table elements. A column evaluates to true if all the current variable values
correspond to the requirements given in the column. If any one of the columns
evaluates to true, then the table’s expression evaluates to true, as we would expect
for an AND/OR expression. The most important difference between this notation

AND/OR table

cond1 or (cond2 and !cond3)

Expression

OR

cond1

cond2

cond3

T

T

F—

—

—A

N

D

FIGURE 9.9

An AND/OR table.

9.3 Specifications 451

and Statecharts is that don’t-cares are explicitly represented in the table,which was
found to be of great help in identifying problems in a specification table.

9.3.2 Advanced Specifications
This section is devoted to a single example of a sophisticated system. Application
Example 9.2 describes the specification of a real-world, safety-critical system used
in aircraft. The specification techniques developed to ensure the correctness and
safety of this system can also be used in many applications, particularly in systems
where much of the complexity goes into the control structure.

Application Example 9.2

The TCAS II specification
TCAS II (Traffic Alert and Collision Avoidance System) is a collision avoidance system (CAS)
for aircraft. Based on a variety of information, a TCAS unit in an aircraft keeps track of the
position of other nearby aircraft. If TCAS decides that a mid-air collision may be likely, it
uses audio commands to suggest evasive action—for example, a prerecorded voice may
warn “DESCEND! DESCEND!” if TCAS believes that an aircraft above poses a threat and that
there is room to maneuver below. TCAS makes sophisticated decisions in real time and is
clearly safety critical. On the one hand, it must detect as many potential collision events as
possible (within the limits of its sensors, etc.). On the other hand, it must generate as few false
alarms as possible, since the extreme maneuvers it recommends are themselves potentially
dangerous.

Leveson et al. [Lev94] developed a specification for the TCAS II system. We won’t cover
the entire specification here, but just enough to provide its flavor. The TCAS II specification
was written in their RSML language. They use a modified version of State-chart notation for
specifying states, in which the inputs to and outputs of the state are made explicit. The notation
is illustrated below.

state 1

Inputs:

State description

Outputs:

452 CHAPTER 9 System Design Techniques

They also use a transition bus to show sets of states in which there are transitions between
all (or almost all) states. In the following example, there are transitions from a, b, c, or d to
any of the other states:

a

b

c

d

The top-level description of the CAS appears below.

CAS

Power-on

Inputs:

TCAS-operational-status: {operational,not-operational}

Fully operational

own-aircraft

other-aircraft, i:[1..30]

mode-s-ground-station, i:[1..15]

Standby

C

Power-off

This diagram specifies that the system has Power-off and Power-on states. In the
power-on state, the system may be in Standby or Fully operational mode. In the Fully
operational mode, three components are operating in parallel, as specified by the AND
State: the own-aircraft subsystem, a subsystem to keep track of up to 30 other aircraft,

9.3 Specifications 453

and a subsystem to keep track of up to 15 Mode S ground stations, which provide radar
information.

The next diagram shows a specification of the Own-Aircraft AND state. Once again, the
behavior of Own-Aircraft is an AND composition of several subbehaviors. The Effective-
SL and Alt-SL states are two ways to control the sensitivity level (SL) of the system,
with each state representing a different sensitivity level. Differing sensitivities are required
depending on distance from the ground and other factors. The Alt-Layer state divides the
vertical airspace into layers, with this state keeping track of the current layer. Climb-Inhibit
and Descent-Inhibit states are used to selectively inhibit climbs (which may be difficult
at high altitudes) or descents (clearly dangerous near the ground), respectively. Similarly,
the Increase-Climb-Inhibit and Increase-Descend-Inhibit states can inhibit high-rate climbs
and descents. Because the Advisory-Status state is rather complicated, its details are not
shown here.

Input:
own-alt-radio: integer
standby-discrete-input: {true, false}
own-alt-barometric: integer
mode-selector: {TA/RA, standby, TA-only,3,4,5,6,7}
radio-altimeter-status: {valid, not-valid}
own-air-status: {airborne, on-ground}
own-mode-s-address: integer
barometric-altimeter-status: {fine-coarse}

traffic-display-permitted: {true, false}
aircraft-altitude-limit: integer
prox-traffic-display: {true, false}
own-alt-rate: integer
config-climb-inhibit: {true, false}
altitude-climb-inhib-active: {true, false}
increase-climb-inhibit-discrete: {true, false}

Output:
sound-aural-alarm: {true, false}
aural-alarm-inhibit: {true, false}
combined-control-out: enumerated
vertical-control-out: enumerated

climb-RA: enumerated
descent-RA: enumerated
own-goal-alt-rate: integer
vertical-RAC: enumerated
horizontal-RAC: enumerated

1

2

3

4

5

6

7

1

2

4

5

6

7

Layer-1

Layer-2

Layer-3

Layer-4

Inhibited

Not-inhibited

Inhibited

Not-inhibited

Alt-LayerAlt-SLEffective-SL Climb-Inhibit Descend-Inhibit

Increase-Climb-Inhibit

Advisory-Status (expanded in section)

Increase-Descend-Inhibit

Inhibited

Not-inhibited

Inhibited

Not-inhibited

C

Own-Aircraft

454 CHAPTER 9 System Design Techniques

9.4 SYSTEM ANALYSIS AND ARCHITECTURE DESIGN
In this section we consider how to turn a specification into an architecture design.
We already have a number of techniques for making specific decisions;in this section
we look at how to get a handle on the overall system architecture. The CRC card
methodology is a well-known and useful way to help analyze a system’s structure. It
is particularly well suited to object-oriented design since it encourages the encapsu-
lation of data and functions.The acronym CRC stands for the following three major
items that the methodology tries to identify:

■ Classes define the logical groupings of data and functionality.

■ Responsibilities describe what the classes do.

■ Collaborators are the other classes with which a given class works.

The name CRC card comes from the fact that the methodology is practiced by
having people write on index cards. (In the United States,the standard size for index
cards is 3�� � 5��, so these cards are often called 3 � 5 cards.) An example card is
shown in Figure 9.10; it has space to write down the class name, its responsibilities
and collaborators, and other information. The essence of the CRC card methodol-
ogy is to have people write on these cards, talk about them, and update the cards
until they are satisfied with the results.

This technique may seem like a primitive way to design computer systems.
However, it has several important advantages. First, it is easy to get noncomputer
people to create CRC cards. Getting the advice of domain experts (automobile
designers for automotive electronics or human factors experts for PDA design, for
example) is very important in system design. The CRC card methodology is infor-
mal enough that it will not intimidate non-computer specialists and will allow you
to capture their input. Second, it aids even computer specialists by encouraging

Class name:
Superclasses:
Subclasses:
Responsibilities: Collaborators:

Class name:
Class’s function:
Attributes:

Front Back

FIGURE 9.10

Layout of a CRC card.

9.4 System Analysis and Architecture Design 455

them to work in a group and analyze scenarios.The walkthrough process used with
CRC cards is very useful in scoping out a design and determining what parts of
a system are poorly understood. This informal technique is valuable to tool-based
design and coding. If you still feel a need to use tools to help you practice the CRC
methodology,software engineering tools are available that automate the creation of
CRC cards.

Before going through the methodology, let’s review the CRC concepts in a little
more detail. We are familiar with classes—they encapsulate functionality. A class
may represent a real-world object or it may describe an object that has been created
solely to help architect the system.A class has both an internal state and a functional
interface; the functional interface describes the class’s capabilities.The responsibil-
ity set is an informal way of describing that functional interface. The responsibili-
ties provide the class’s interface,not its internal implementation. Unlike describing
a class in a programming language, however, the responsibilities may be described
informally in English (or your favorite language). The collaborators of a class are
simply the classes that it talks to, that is, classes that use its capabilities or that it
calls upon to help it do its work.

The class terminology is a little misleading when an object-oriented programmer
looks at CRC cards. In the methodology, a class is actually used more like an object
in an OO programming language—the CRC card class is used to represent a real
actor in the system. However, the CRC card class is easily transformable into a class
definition in an object-oriented design.

CRC card analysis is performed by a team of people. It is possible to use it by
yourself, but a lot of the benefit of the method comes from talking about the devel-
oping classes with others. Before becoming the process, you should create a large
number of CRC cards using the basic format shown in Figure 9.10.As you are work-
ing in your group, you will be writing on these cards; you will probably discard
many of them and rewrite them as the system evolves. The CRC card method-
ology is informal, but you should go through the following steps when using it
to analyze a system:

1. Develop an initial list of classes: Write down the class name and perhaps
a few words on what it does. A class may represent a real-world object or an
architectural object. Identifying which category the class falls into (perhaps
by putting a star next to the name of a real-world object) is helpful. Each per-
son can be responsible for handling a part of the system, but team members
should talk during this process to be sure that no classes are missed and that
duplicate classes are not created.

2. Write an initial list of responsibilities and collaborators: The respon-
sibilities list helps describe in a little more detail what the class does.
The collaborators list should be built from obvious relationships between
classes. Both the responsibilities and collaborators will be refined in the later
stages.

456 CHAPTER 9 System Design Techniques

3. Create some usage scenarios: These scenarios describe what the system
does. Scenarios probably begin with some type of outside stimulus,which is
one important reason for identifying the relevant real-world objects.

4. Walk through the scenarios: This is the heart of the methodology. During
the walk-through, each person on the team represents one or more classes.
The scenario should be simulated by acting: people can call out what their
class is doing, ask other classes to perform operations, and so on. Moving
around, for example, to show the transfer of data, may help you visualize the
system’s operation. During the walk-through, all of the information created
so far is targeted for updating and refinement, including the classes, their
responsibilities and collaborators, and the usage scenarios. Classes may be
created, destroyed, or modified during this process. You will also probably
find many holes in the scenario itself.

5. Refine the classes, responsibilities, and collaborators: Some of this will be
done during the course of the walkthrough, but making a second pass after
the scenarios is a good idea.The longer perspective will help you make more
global changes to the CRC cards.

6. Add class relationships: Once the CRC cards have been refined, subclass
and superclass relationships should become clearer and can be added to
the cards.

Once you have the CRC cards, you need to somehow use them to help drive
the implementation. In some cases, it may work best to use the CRC cards as direct
source material for the implementors; this is particularly true if you can get the
designers involved in the CRC card process. In other cases, you may want to write
a more formal description, in UML or another language,of the information that was
captured during the CRC card analysis, and then use that formal description as the
design document for the system implementors.

Example 9.2 illustrates the use of the CRC card methodology.

Example 9.2

CRC card analysis
Let’s perform a CRC card analysis of the elevator system of Section 8.7. First, we need the
following basic set of classes:

■ Real-world classes: elevator car, passenger, floor control, car control, and car sensor.

■ Architectural classes: car state, floor control reader, car control reader, car control
sender, and scheduler.

For each class, we need the following initial set of responsibilities and collaborators. (An
asterisk, *, is used to remind ourselves which classes represent real-world objects.)

9.5 Quality Assurance 457

Class Responsibilities Collaborators

Elevator car* Moves up and down Car control, car sensor, car
control sender

Passenger* Pushes floor control and
car control buttons

Floor control, car control

Floor control* Transmits floor requests Passenger, floor control reader
Car control* Transmits car requests Passenger, car control reader
Car sensor* Senses car position Scheduler
Car state Records current position

of car
Scheduler, car sensor

Floor control reader Interface between floor control
and rest of system

Floor control, scheduler

Car control reader Interface between car control
and rest of system

Car control, scheduler

Car control sender Interface between scheduler
and car

Scheduler, elevator car

Scheduler Sends commands to cars
based upon requests

Floor control reader, car control
reader, car control sender, car
state

Several usage scenarios define the basic operation of the elevator system as well as some
unusual scenarios:

1. One passenger requests a car on a floor, gets in the car when it arrives, requests
another floor, and gets out when the car reaches that floor.

2. One passenger requests a car on a floor, gets in the car when it arrives, and requests
the floor that the car is currently on.

3. A second passenger requests a car while another passenger is riding in the elevator.

4. Two people push floor buttons on different floors at the same time.

5. Two people push car control buttons in different cars at the same time.

At this point, we need to walk through the scenarios and make sure they are reasonable. Find a
set of people and walk through these scenarios. Do the classes, responsibilities, collaborators,
and scenarios make sense? How would you modify them to improve the system specification?

9.5 QUALITY ASSURANCE
The quality of a product or service can be judged by how well it satisfies its
intended function.A product can be of low quality for several reasons,such as it was

458 CHAPTER 9 System Design Techniques

shoddily manufactured, its components were improperly designed, its architecture
was poorly conceived, and the product’s requirements were poorly understood.
Quality must be designed in.You can’t test out enough bugs to deliver a high-quality
product. The quality assurance (QA) process is vital for the delivery of a satis-
factory system. In this section we will concentrate on portions of the methodology
particularly aimed at improving the quality of the resulting system.

The software testing techniques described earlier in the book constitute one
component of quality assurance, but the pursuit of quality extends throughout the
design flow. For example, settling on the proper requirements and specification
cannot be overlooked as an important determinant of quality. If the system is too
difficult to design, it will probably be difficult to keep it working properly. Cus-
tomers may desire features that sound nice but in fact don’t add much to the overall
usefulness of the system. In many cases, having too many features only makes the
design more complicated and the final device more prone to breakage.

To help us understand the importance of QA, Application Example 9.3 describes
serious safety problems in one computer-controlled medical system. Medical equip-
ment, like aviation electronics, is a safety-critical application; unfortunately, this
medical equipment caused deaths before its design errors were properly under-
stood. This example also allows us to use specification techniques to understand
software design problems. In the rest of the section, we look at several ways
of improving quality: design reviews, measurement-based QA, and techniques for
debugging large systems.

Application Example 9.3

The Therac-25 medical imaging system
The Therac-25 medical imaging system caused what Leveson and Turner called “the most
serious computer-related accidents to date (at least nonmilitary and admitted)” [Lev93]. In
the course of six known accidents, these machines delivered massive radiation overdoses,
causing deaths and serious injuries. Leveson and Turner analyzed the Therac-25 system and
the causes for these accidents.

The Therac-25 was controlled by a PDP-11 minicomputer. The computer was responsible
for controlling a radiation gun that delivered a dose of radiation to the patient. It also runs a
terminal that presents the main user interface. The machine’s software was developed by a
single programmer in PDP-11 assembly language over several years. The software includes
four major components: stored data, a scheduler, a set of tasks, and interrupt services. The
three major critical tasks in the system follow:

■ A treatment monitor controls and monitors the setup and delivery of the treatment in
eight phases.

■ A servo task controls the radiation gun, machine motions, and so on.

■ A housekeeper task takes care of system status interlocks and limit checks. (A limit
check determines whether some system parameter has gone beyond preset limits.)

9.5 Quality Assurance 459

The code was relatively crude—the software allowed several processes access to shared
memory, there was no synchronization mechanism aside from shared variables, and test-and-
set for shared variables were not indivisible operations.

Let’s examine the software problems responsible for one series of accidents. Leveson and
Turner reverse-engineered a specification for the relevant software as follows:

Hand Vtkbp

Treat

When Tphase is "1" (Datent):

Tphase

Control

0

1

2

3

4

5

6

7

Data entry
completion
flag

Offset parameters

Set upper
collimator

Mode/energy offset variable

Calibration
tables

Mode/energy

Reset

Date, time, ID changes

Terminate treatment

Pause treatment

Patient treatment

Setup test

Setup done

Datent

Treat is the treatment monitor task, divided into eight subroutines (Reset, Datent, and
so on). Tphase is a variable that controls which of these subroutines is currently executing.
Treat reschedules itself after the execution of each subroutine. The Datent subroutine com-
municates with the keyboard entry task via the data entry completion flag, which is a shared
variable. Datent looks at this flag to determine when it should leave the data entry mode and
go to the Setup test mode. The Mode/energy offset variable is a shared variable: The top byte
holds offset parameters used by the Datent subroutine, and the low-order byte holds mode
and energy offset used by the Hand task.

When the machine is run, the operator is forced to enter the mode and energy (there is
one mode in which the energy is set to a default), but the operator can later edit the mode
and energy separately. The software’s behavior is timing dependent. If the keyboard handler
sets the completion variable before the operator changes the Mode/energy data, the Datent
task will not detect the change—once Treat leaves Datent, it will not enter that subroutine
again during the treatment. However, the Hand task, which runs concurrently, will see the

460 CHAPTER 9 System Design Techniques

new Mode/energy information. Apparently, the software included no checks to detect the
incompatible data.

After the Mode/energy data are set, the software sends parameters to a digital/analog
converter and then calls a Magnet subroutine to set the bending magnets. Setting the magnets
takes about 8 seconds and a subroutine called Ptime is used to introduce a time delay. Due to
the way that Datent, Magnet, and Ptime are written, it is possible that changes to the parameters
made by the user can be shown on the screen but will not be sensed by Datent. One accident
occurred when the operator initially entered Mode/energy, went to the command line, changed
Mode/energy, and returned to the command line within 8 s. The error therefore depended
on the typing speed of the operator. Since operators become faster and more skillful with the
machine over time, this error is more likely to occur with experienced operators.

Leveson and Turner emphasize that the following poor design methodologies and flawed
architectures were at the root of the particular bugs that led to the accidents:

■ The designers performed a very limited safety analysis. For example, low probabilities
were assigned to certain errors with no apparent justification.

■ Mechanical backups were not used to check the operation of the machine (such as
testing beam energy), even though such backups were employed in earlier models of
the machine.

■ Programmers created overly complex programs based on unreliable coding styles.

In summary, the designers of the Therac-25 relied on system testing with insufficient
module testing or formal analysis.

In this section, we review the QA process in more detail. Section 9.5.1 intro-
duces some QA techniques, Section 9.5.2 focuses on verifying requirements and
specifications, and Section 9.5.3 discusses design reviews.

9.5.1 Quality Assurance Techniques
The International Standards Organization (ISO) has created a set of quality stan-
dards known as ISO 9000 . ISO 9000 was created to apply to a broad range of
industries, including but not limited to embedded hardware and software. A stan-
dard developed for a particular product,such as wooden construction beams,could
specify criteria particular to that product, such as the load that a beam must be able
to carry. However, a wide-ranging standard such as ISO 9000 cannot specify the
detailed standards for every industry. Consequently, ISO 9000 concentrates on pro-
cesses used to create the product or service.The processes used to satisfy ISO 9000
affect the entire organization as well as the individual steps taken during design and
manufacturing.

A detailed description of ISO 9000 is beyond the scope of this book; several
books [Sch94, Jen95] describe ISO 9000’s applicability to software development.
We can,however,make the following observations about quality management based
on ISO 9000:

9.5 Quality Assurance 461

■ Process is crucial: Haphazard development leads to haphazard products
and low quality. Knowing what steps are to be followed to create a high-
quality product is essential to ensuring that all the necessary steps are in fact
followed.

■ Documentation is important: Documentation has several roles: The creation
of the documents describing processes helps those involved understand the
processes;documentation helps internal quality monitoring groups to ensure
that the required processes are actually being followed; and documentation
also helps outside groups (customers,auditors,etc.) understand the processes
and how they are being implemented.

■ Communication is important: Quality ultimately relies on people. Good
documentation is an aid for helping people understand the total quality pro-
cess.The people in the organization should understand not only their specific
tasks but also how their jobs can affect overall system quality.

Many types of techniques can be used to verify system designs and ensure quality.
Techniques can be either manual or tool based. Manual techniques are surprisingly
effective in practice. In Section 9.5.3 we discuss design reviews, which are simply
meetings at which the design is discussed and which are very successful in identi-
fying bugs. Many of the software testing techniques described in Section 5.10 can
be applied manually by tracing through the program to determine the required
tests. Tool-based verification helps considerably in managing large quantities of
information that may be generated in a complex design. Test generation programs
can automate much of the drudgery of creating test sets for programs. Tracking
tools can help ensure that various steps have been performed. Design flow tools
automate the process of running design data through other tools.

Metrics are important to the quality control process.To know whether we have
achieved high levels of quality, we must be able to measure aspects of the system
and our design process. We can measure certain aspects of the system itself, such
as the execution speed of programs or the coverage of test patterns. We can also
measure aspects of the design process, such as the rate at which bugs are found.
Section describes ways in which measurements can be used in the QA process.

Tool and manual techniques must fit into an overall process. The details of that
process will be determined by several factors, including the type of product being
designed (e.g., video game, laser printer, air traffic control system), the number
of units to be manufactured and the time allowed for design, the existing prac-
tices in the company into which any new processes must be integrated, and many
other factors. An important role of ISO 9000 is to help organizations study their
total process, not just particular segments that may appear to be important at a
particular time.

One well-known way of measuring the quality of an organization’s software
development process is the Capability Maturity Model (CMM) developed by
Carnegie Mellon University’s Software Engineering Institute [SEI99]. The CMM

462 CHAPTER 9 System Design Techniques

provides a model for judging an organization. It defines the following five levels
of maturity:

1. Initial: A poorly organized process, with very few well-defined processes.
Success of a project depends on the efforts of individuals,not the organization
itself.

2. Repeatable: This level provides basic tracking mechanisms that allow man-
agement to understand cost, scheduling, and how well the systems under
development meet their goals.

3. Defined: The management and engineering processes are documented and
standardized. All projects make use of documented and approved standard
methods.

4. Managed: This phase makes detailed measurements of the development
process and product quality.

5. Optimizing: At the highest level, feedback from detailed measurements is
used to continually improve the organization’s processes.

The Software Engineering Institute has found very few organizations anywhere
in the world that meet the highest level of continuous improvement and quite a few
organizations that operate under the chaotic processes of the initial level. However,
the CMM provides a benchmark by which organizations can judge themselves and
use that information for improvement.

9.5.2 Verifying the Specification
The requirements and specification are generated very early in the design process.
Verifying the requirements and specification is very important for the simple reason
that bugs in the requirements or specification can be extremely expensive to fix
later on. Figure 9.11 shows how the cost of fixing bugs grows over the course
of the design process (we use the waterfall model as a simple example, but the
same holds for any design flow). The longer a bug survives in the system, the more
expensive it will be to fix. A coding bug, if not found until after system deployment,
will cost money to recall and reprogram existing systems, among other things. But
a bug introduced earlier in the flow and not discovered until the same point will
accrue all those costs and more costs as well.A bug introduced in the requirements
or specification and left until maintenance could force an entire redesign of the
product,not just the replacement of a ROM. Discovering bugs early is crucial because
it prevents bugs from being released to customers, minimizes design costs, and
reduces design time. While some requirements and specification bugs will become
apparent in the detailed design stages—for example,as the consequences of certain
requirements are better understood—it is possible and desirable to weed out many
bugs during the generation of the requirements and spec.

9.5 Quality Assurance 463

Requirements

Architecture

Coding

Testing

Maintenance

C
o

st
 to

 fi
x

Time

Requirements bug

Coding bug

FIGURE 9.11

Long-lived bugs are more expensive to fix.

The goal of validating the requirements and specification is to ensure that they
satisfy the criteria we originally applied in Section 9.2 to create the specification,
including correctness,completeness,consistency,and so on.Validation is in fact part
of the effort of generating the requirements and specification. Some techniques can
be applied while they are being created to help you understand the requirements
and specifications, while others are applied on a draft, with results used to modify
the specs.

Since requirements come from the customer and are inherently somewhat infor-
mal, it may seem like a challenge to validate them. However, there are many things
that can be done to ensure that the customer and the person actually writing the
requirements are communicating. Prototypes are a very useful tool when deal-
ing with end users—rather than simply describe the system to them in broad,
technical terms, a prototype can let them see, hear, and touch at least some of
the important aspects of the system. Of course, the prototype will not be fully
functional since the design work has not yet been done. However, user interfaces
in particular are well suited to prototyping and user testing. Canned or randomly
generated data can be used to simulate the internal operation of the system.
A prototype can help the end user critique numerous functional and nonfunctional
requirements, such as data displays, speed of operation, size, weight, and so
forth. Certain programming languages, sometimes called prototyping languages

464 CHAPTER 9 System Design Techniques

or specification languages, are especially well suited to prototyping. Very
high-level languages (such as Matlab in the signal processing domain) may be able to
perform functional attributes, such as the mathematical function to be performed,
but not nonfunctional attributes such as the speed of execution. Preexisting sys-
tems can also be used to help the end user articulate his or her needs. Specifying
what someone does or doesn’t like about an existing machine is much easier
than having them talk about the new system in the abstract. In some cases, it
may be possible to construct a prototype of the new system from the preexisting
system. Particularly when designing cyber-physical systems that use real-time
computers for physical control, simulation is an important technique for validating
requirements. Requirements for cyber-physical systems depend in part on the physi-
cal properties of the plant being controlled. Simulators that model the physical
plant can help system designers understand the requirements on the cyber side of
the system.

The techniques used to validate requirements are also useful in verifying that the
specifications are correct. Building prototypes,specification languages,and compar-
isons to preexisting systems are as useful to system analysis and designers as they
are to end users. Auditing tools may be useful in verifying consistency, complete-
ness, and so forth. Working through usage scenarios often helps designers fill
out the details of a specification and ensure its completeness and correctness. In
some cases, formal techniques (that is,design techniques that make use of mathe-
matical proofs) may be useful. Proofs may be done either manually or automatically.
In some cases,proving that a particular condition can or cannot occur according to
the specification is important. Automated proofs are particularly useful in certain
types of complex systems that can be specified succinctly but whose behavior over
time is complex. For example, complex protocols have been successfully formally
verified.

9.5.3 Design Reviews
The design review [Fag76] is a critical component of any QA process. The
design review is a simple, low-cost way to catch bugs early in the design process.
A design review is simply a meeting in which team members discuss a design,
reviewing how a component of the system works. Some bugs are caught sim-
ply by preparing for the meeting, as the designer is forced to think through the
design in detail. Other bugs are caught by people attending the meeting, who will
notice problems that may not be caught by the unit’s designer. By catching bugs
early and not allowing them to propagate into the implementation, we reduce
the time required to get a working system. We can also use the design review
to improve the quality of the implementation and make future changes easier to
implement.

A design review is held to review a particular component of the system.A design
review team has the following members:

9.5 Quality Assurance 465

■ The designers of the component being reviewed are,of course, central to the
design process. They present their design to the rest of the team for review
and analysis.

■ The review leader coordinates the pre-meeting activities, the design review
itself, and the post-meeting follow-up.

■ The review scribe records the minutes of the meeting so that designers and
others know which problems need to be fixed.

■ The review audience studies the component. Audience members will nat-
urally include other members of the project for which this component is
being designed. Audience members from other projects often add valuable
perspective and may notice problems that team members have missed.

The design review process begins before the meeting itself. The design team
prepares a set of documents (code listings, flowcharts, specifications, etc.) that will
be used to describe the component.These documents are distributed to other mem-
bers of the review team in advance of the meeting, so that everyone has time to
become familiar with the material.The review leader coordinates the meeting time,
distribution of handouts, and so forth.

During the meeting, the leader is responsible for ensuring that the meeting
runs smoothly, while the scribe takes notes about what happens. The designers
are responsible for presenting the component design. A top–down presentation
often works well, beginning with the requirements and interface description, fol-
lowed by the overall structure of the component, the details, and then the testing
strategy. The audience should look for all types of problems at every level of detail,
including the problems listed below.

■ Is the design team’s view of the component’s specification consistent with
the overall system specification, or has the team misinterpreted something?

■ Is the interface specification correct?

■ Does the component’s internal architecture work well?

■ Are there coding errors in the component?

■ Is the testing strategy adequate?

The notes taken by the scribe are used in meeting follow-up. The design team
should correct bugs and address concerns raised at the meeting. While doing so,
the team should keep notes describing what they did. The design review leader
coordinates with the design team,both to make sure that the changes are made and
to distribute the change results to the audience. If the changes are straightforward,
a written report of them is probably adequate. If the errors found during the review
caused a major reworking of the component, a new design review meeting for the
new implementation, using as many of the original team members as possible, may
be useful.

466 CHAPTER 9 System Design Techniques

SUMMARY
System design takes a comprehensive view of the application and the system under
design. To ensure that we design an acceptable system, we must understand the
application and its requirements. Numerous techniques, such as object-oriented
design,can be used to create useful architectures from the system’s original require-
ments. Along the way, by measuring our design processes, we can gain a clearer
understanding of where bugs are introduced, how to fix them, and how to avoid
introducing them in the future.

What We Learned

■ Design methodologies and design flows can be organized in many differ-
ent ways.

■ A poor understanding of requirements means that the final system won’t do
what it is supposed to do, even if you use the best possible implementation
techniques.

■ CRC cards help us understand the system architecture in the initial phases of
architecture design.

■ We want to catch bugs as early as possible to minimize the cost of fixing
those bugs.

FURTHER READING
Pressman [Pre97] provides a thorough introduction to software engineering. Davis
[Dav90] gives a good survey of software requirements. Beizer [Bei84] surveys
system-level testing techniques. Leveson [Lev86] provides a good introduction to
software safety. Schmauch [Sch94] and Jenner [Jen95] both describe ISO 9000
for software development. A tutorial edited by Chow [Cho85] includes a num-
ber of important early papers on software quality assurance. Cusumano [Cus91]
provides a fascinating account of software factories in both the United States and
Japan.

QUESTIONS
Q9-1 Briefly describe the differences between the waterfall and spiral development

models.

Q9-2 What skills might be useful in a cross-functional team that is responsible for
designing a set-top box?

Lab Exercises 467

Q9-3 Provide realistic examples of how a requirements document may be:

a. ambiguous,

b. incorrect,

c. incomplete,

d. unverifiable.

Q9-4 How can poor specifications lead to poor quality code—do aspects of a
poorly-constructed specification necessarily lead to bad software?

Q9-5 Estimate the cost of finding and fixing a single software bug.

Q9-6 What are the main phases of a design review?

LAB EXERCISES
L9-1 Draw a diagram showing the developmental steps of one of the projects

you recently designed. Which development model did you follow (waterfall,
spiral, etc.)?

L9-2 Find a detailed description of a system of interest to you. Write your own
description of what it does and how it works.

This page intentionally left blank

APPENDIX

AUML Notations

INTRODUCTION
In this appendix we review the basics of UML notation for easy reference. We do
not cover all the aspects of UML. For a more thorough treatment of UML, see refer-
ences such as Booch et al. [Boo99]. This appendix includes only a basic summary
of UML diagrams; for a more detailed introduction to what these symbols mean, see
Section 1.3.

A.1 PRIMITIVE ELEMENTS
The most fundamental primitives of UML are the object and the class; an object is
an instance of a class. In addition, various types of relations between objects and
classes are possible. Other types of elements have also been defined. Primitives are
summarized in Figure A.1. A class has attributes and behaviors. An object may have
its attributes assigned particular values. An anonymous object belongs to a class
but has no name, probably because it does not play a major role in the system.
A package is an organizational unit of the system that may contain class definitions,
objects,and so on.A state is used in state diagrams to describe behavior.A physical
processor is a hardware element. A component is a physical part of a system that
implements a set of interfaces.

We often find that we use a certain combination of elements in an object or
class many times. We can give these combinations names; such a definition is called
a stereotype in UML. The <<signal>> shown in Figure A.2 is an example of a
stereotype.

An active class is a class that will implement a separate thread of control. As
shown in Figure A.3, an active class is identified by its heavy borders.

A.2 DIAGRAM TYPES
The UML primitives can be put together in a number of ways.This section provides
examples of several of the basic UML diagram types that we use in this book.

469

470 APPENDIX A UML Notations

Object

Behaviors

Attributes

Class name

Package name

Class 1

Class 2

state
transition

:class Comment

Anonymous object

FIGURE A.1

Primitive elements for UML diagrams.

<<signal>>
Class 1

FIGURE A.2

A UML stereotype.

activeClass 1

attribute 1

behavior 1()

FIGURE A.3

An active class.

A.2 Diagram Types 471

A.2.1 Class Diagram
The class diagram defines classes and describes the relationships between them.
One type of relationship between classes is subtype/supertype, which is shown
in Figure A.4; note that the derivation arrows go from derived to base. In the
upper part of the figure, Class 2 is derived from Class 1. In the lower part of the
figure, Class b is derived from both Class a1 and Class a2, an example of multiple
inheritance.

Many relationships other than inheritance can be represented in UML. A class
diagram with associations and their multiplicities is shown in Figure A.5. This dia-
gram shows how many objects of one class interact with a given number of objects
of another class.

A.2.2 State Diagram
The state diagram shows the structure of states and transitions for a behavior.A basic
state diagram is shown in FigureA.6.A transition may be labeled with the event that
causes entry onto that transition and the actions taken on the transition.

UML allows you to describe Statechart-style substates. Examples of sequen-
tial and concurrent substates are shown in Figure A.7. The sequential substates

Class 1

Class 2

Superclass
(base class)

Subclass
(derived class)

Class a1 Class a2

Class b

Single inheritance

Multiple inheritance

FIGURE A.4

Class derivation in a UML class diagram.

472 APPENDIX A UML Notations

a

Class 2

c bClass 1

2

2

1*

2

1

FIGURE A.5

A UML class diagram showing associations.

Start
Entry/action

State 1

State 2

State 3

Condition
End

FIGURE A.6

A state diagram in UML.

s1c

s1b

s1a s2a1 s2a2

s2b1 s2b2

Sequential substates

Concurrent substates

s1
s2

FIGURE A.7

Substates in UML.

(similar to the Statechart OR state) describe detailed behavior within an over-
all system state; the concurrent substates (similar to the Statechart AND state)
describe two distinct activities going on concurrently within the same system
state.

A.2 Diagram Types 473

A.2.3 Sequence and Collaboration Diagrams
Sequence and collaboration diagrams both illustrate scenarios,but in different ways.
Figure A.8 shows a UML sequence diagram that includes a timeline. The bars show
when different objects are active. FigureA.9 shows a UML collaboration diagram for
the same sequence of events. In this diagram,messages are given sequence numbers
to indicate time.

Time

Focus of
controlEvent 2

Event 1

Event 3

:class 1 :class 2 :class 3

FIGURE A.8

A sequence diagram in UML.

2: event 2

Sequence number: operation

object 1:
Class 1

object 2:
Class 2

object 3:
Class 3

1: event 1

FIGURE A.9

A UML collaboration diagram.

This page intentionally left blank

Glossary

Absolute address An address of an exact location in memory (Section 2.3.2, Section 5.3).

AC0–AC3 The four accumulators available in the C55x (Section 2.3.1).

Accumulator A register that is used as both the source and destination for arithmetic operations,
as in accumulating a sum (Section 2.3).

Ack Short for acknowledge, a signal used in handshaking protocols (Section 4.1.1).

ACPI Advanced Configuration and Power Interface, an industry standard for power management
interfaces (Section 6.6).

Activation record A data structure that describes the information required by a currently active
procedure call (Section 2.2.3).

Active class A UML class that can create its own thread of control (Section 6.2.4).

Active low A logic 0 that denotes activity for a device, as compared to the normal logic 1
(Section 4.1.1).

Actuator A physical output device (Section 8.1).

A/D converter See analog/digital converter.

ADPCM Adaptive differential pulse code modulation (Section 6.7.1).

Allocation The assignment of responsibility for a computation to a processing element
(Section 7.3.2).

Analog/digital converter A device that converts an analog signal into digital form (Sec-
tion 4.3.2).

AND/OR table A technique for specifying control-oriented functionality (Section 9.3).

Application layer In the OSI model, the end-user interface (Section 8.1.2).

ASIC Application-specific integrated circuit (Section 4.5.2, Section 7.2).

Aspect ratio In a memory, the ratio of the number of addressable units to the number of bits
read per request (Section 4.2.1).

Assembler A program that creates object code from a symbolic description of instructions
(Section 5.3).

Asynchronous An event not coordinated with a clock (Section 4.2.2).

Atomic operation An operation that cannot be interrupted (Section 6.4.1).

Auto-indexing Automatically incrementing or decrementing a value before or after using it
(Section 2.2.2).

Average-case execution time A typical execution time for typical inputs (Section 5.6).

Bank A block of memory in a memory system or cache.

Base-plus-offset addressing Calculating the address by adding a base address to an offset
(usually contained in a register) (Section 2.2.2).

Basis paths A set of execution paths that cover the possible execution paths (Section 5.10.1).

Best-case execution time The shortest execution time for any possible set of inputs (Sec-
tion 5.6).

Best-effort routing The Internet routing methodology, which does not guarantee completion
(Section 8.4.1).

475

476 Glossary

Big-endian A data format in which the low-order byte is stored in the highest bits of the word
(Section 2.2.1).

BIOS Basic Input/Output System. Originally, low-level IBM PC software; today, low-level operat-
ing software in any computer system (Section 4.5.3).

Black-box testing Testing a program without knowledge of its implementation (Section 5.10.2).

Blocking communication Communication that requires a process to wait after sending a
message (Section 6.4).

Boot-block flash A type of flash memory that protects some of its contents (Section 4.2.3).

Bottom–up design Using information from lower levels of abstraction to modify the design at
higher levels of abstraction (Section 1.2).

Bounce Repeated make-break contacts upon of a switch (Section 4.3.3).

Branch table A multiway branching mechanism that uses a value to index into a table of branch
targets (Example 2.5).

Branch target The destination address of a branch (Section 2.2.3).

Branch testing A technique to generate a set of tests for conditionals (Section 5.10.1).

Breakpoint A stopping point for system execution (Section 4.6.2).

Bridge A logic unit that acts as an interface between two buses (Section 4.1.3).

Bundle A collection of logically related signals (Section 4.1.1).

Burst transfer A bus transfer that transfers several contiguous locations without separate
addresses for each (Section 4.1.1).

Bus Generally, a shared connection. CPUs use buses to connect themselves to external devices
and memory (Section 4.1).

Bus grant The granting of ownership of the bus to a device (Section 4.1.2).

Bus master The current owner of the bus (Section 4.1.2).

Bus request A request to obtain ownership of the bus (Section 4.1.2).

Busy-wait I/O Servicing an I/O device by executing instructions that test the device’s state
(Section 3.1.3).

Cache A small memory that holds copies of certain main memory locations for fast access
(Section 3.4.1).

Cache hit A memory reference to a location currently held in the cache (Section 3.4.1).

Cache miss A memory reference to a location not currently in the cache (Section 3.4.1).

Cache miss penalty The extra time incurred for a memory reference that is a cache miss
(Section 3.5.2).

CAN bus A serial bus for networked embedded systems, originally designed for automobiles
(Section 8.5.1).

Capability Maturity Model A method developed at the Software Engineering Institute of
Carnegie Mellon University for assessing the quality of software development processes
(Section 9.5.1).

Capacity miss A cache miss that occurs because the program’s working set is too large for the
cache (Section 3.4.1).

Glossary 477

CAS See column address select.

CDFG See control/data flow graph.

Central processing unit The part of the computer system responsible for executing instructions
fetched from memory (Section 2.1).

Changing In logic timing analysis, a signal whose value is changing at a particular moment in
time (Section 4.1.1).

Circular buffer An array used to hold a window of a stream of data (Section 5.1.2).

CISC Complex instruction set computer. Typically uses a number of instruction formats of varying
length and provides complex operations in some instructions (Section 2.1).

Class A type description in an object-oriented language (Section 1.3).

Class diagram A UML diagram that defines classes and shows derivation relationships among
them (Section 1.4.3).

Clear-box testing Generating tests for a program with knowledge of its structure (Sec-
tion 5.10.1).

CMM See Capability Maturity Model.

CMOS Complementary metal oxide semiconductor, the dominant VLSI technology today
(Section 3.6).

Code motion A technique for moving operations in a program without affecting its behavior
(Section 5.7.1).

Cold miss See compulsory miss.

Collaboration diagram A UML diagram that shows communication among classes without the
use of a timeline (Section 1.4.3, Section A.2.3). See also sequence diagram.

Column address select A DRAM signal that indicates the column part of the address is being
presented to the memory (Section 4.2.2).

Communication link A connection between processing elements (Section 8.1).

Completion time The time at which a process finishes executing (Section 6.1.4).

Compulsory miss A cache miss that occurs the first time a location is used (Section 3.4.1).

Computational kernel A small portion of an algorithm that performs a long function (Introduc-
tion of Chapter 7).

Computing platform A hardware system used for embedded computing (Introduction of
Chapter 4).

Concurrent engineering Simultaneous design of several different system components (Sec-
tion 9.1.2).

Conflict graph A graph that represents incompatibilities between entities; used in register
allocation (Section 5.5.5).

Conflict miss A cache miss caused by two locations in use mapping to the same cache location
(Section 3.4.1).

Control/data flow graph A graph that models both the data and control operations in a program
(Section 5.2).

Context The state of a process (Section 6.2.1).

478 Glossary

Controllability The ability to set a value in system state during testing.

Co-processor An optional unit added to a CPU that is responsible for executing some of the
CPU’s instructions (Section 3.3).

Co-routine A manual method of programming concurrency (Section 6.1.7).

Counter A device that counts asynchronous external events (Section 4.3.1).

CPSR Current program status register in the ARM processor (Section 2.2.2).

CPU See central processing unit.

CPU time The total execution time of a process (Section 6.1.4).

CRC card A technique for capturing design information (Section 9.4).

Critical instant In RMA, the worst-case combination of processes (Section 6.3.1).

Cycle-accurate simulator A CPU simulation that is accurate to the clock-cycle level (Sec-
tion 5.6.2).

Cyclomatic complexity A measure of the control complexity of a program (Section 5.10.1).

D/A converter See digital/analog converter.

Data flow graph A graph that models data operations without conditionals (Section 5.2.1).

Data flow testing A technique for generating tests by examining the data flow representation of
a program (Section 5.10.1).

Data link layer In the OSI model,the layer responsible for reliable data transport (Section 8.1.2).

Dead code elimination Eliminating code that can never be executed (Section 5.5.2).

Deadline The time at which a process must finish (Section 6.1.3).

Debouncing Eliminating the bouncing of a switch (Section 4.3.3).

Decision node A node in a CDFG that models a conditional (Section 5.2.2).

Def-use analysis Analyzing the relationships between reads and writes of variables in a program
(Section 5.10.1).

Delayed branch A branch instruction that always executes one or more instructions after the
branch, independent of whether the branch is taken (Section 3.5.1).

Dense instruction set An instruction set designed to provide compact code (Section 5.9).

Design flow A series of steps used to implement a system (Section 9.1.2).

Design methodology A method of proceeding through levels of abstraction to complete a design
(Section 9.1).

Design process See design methodology.

Digital/analog converter A device that converts a sequence of digital values into an analog
waveform (Section 4.3.2).

Digital signal processor A microprocessor whose architecture is optimized for digital signal
processing applications (Introduction of Chapter 2).

Direct-mapped cache A cache with a single set (Section 3.4.1).

Direct memory access A bus transfer performed by a device without executing instructions on
the CPU (Section 4.1.2).

Distributed embedded system An embedded system built around a network or one in which
communication between processing elements is explicit (Introduction of Chapter 8).

Glossary 479

DMA See direct memory access.

DMA controller A logic unit designed to execute DMA transfers (Section 4.1.2).

DNS See Domain Name Server.

Domain Name Server An Internet service that translates names to Internet addresses
(Section 8.4.1).

DRAM See dynamic random access memory.

DSP See digital signal processor.

Dynamic power management A power management technique that looks at the CPU activity
(Section 3.6).

Dynamic priority Process priorities that change during execution (Section 6.3).

Dynamic random access memory A memory that relies on stored charge (Section 4.2.2).

Dynamically linked library A code library that is linked into the program at the start of
execution (Section 5.3.2).

Earliest deadline first A variable priority scheduling scheme (Section 6.3.2).

EDF See earliest deadline first.

Embedded computer system A computer used to implement some of the functionality of
something other than a general-purpose computer (Section 1.1).

Encoded keyboard A keyboard that produces codes for key depressions (Section 4.3.3).

Energy The ability to do work (Section 3.6).

Enq Short for enquiry, a signal used in handshaking protocols (Section 4.1.1).

Entry point A label in an assembly language module that can be referred to by other program
modules (Section 5.3.2).

Error injection Evaluating test coverage by inserting errors into a program and using your tests
to try to find those errors (Section 5.10.3).

Ethernet A local area network (Section 8.2.2).

Evaluation board A printed circuit board designed to provide a typical platform (Section 4.5.2).

Executable binary An object program that is ready for execution (Section 5.3).

Exception Any unusual condition in the CPU that is recognized during execution (Section 3.2.2).

Expression simplification Rewriting an arithmetic expression (Section 5.5.1).

External reference A reference in an assembly language program to another module’s entry
point (Section 5.3.2).

Factory-programmed ROM A ROM that is programmed during manufacture (Section 4.2.3).

Fast return In the C55x, a procedure return that uses some registers rather than the stack to
store certain values (Section 2.3.4).

Federated architecture An architecture for networked embedded systems that is constructed
from several networks, each corresponding to an operational subsystem (Section 8.5.2).

Field-programmable gate array An integrated circuit that can be programmed by the user and
that provides multilevel logic (Section 4.5.2, Section 7.2).

First-level cache The cache closest to the CPU (Section 3.4.1).

Flash memory An electrically-erasable programmable read-only memory (Section 4.2.3).

480 Glossary

FlexRay A network designed for real-time systems (Section 8.5.1).

Four-cycle handshake A handshaking protocol that goes through four states (Section 4.1.1).

FPGA See field-programmable gate array.

Frame pointer Points to the end of a procedure stack frame (Section 5.4.2).

Function In a programming language, a procedure that can return a value to the caller
(Section 2.2.3).

Functional requirements Requirements that describe the logical behavior of the system
(Section 9.2).

Glue logic Interface logic (Section 4.4.2).

Glueless interface An interface between components that requires no glue logic (Section 4.4.2).

Handshake A protocol designed to confirm the arrival of data (Section 4.1.1).

Hardware/software co-design The simultaneous design of hardware and software components
to meet system requirements (Section 7.2).

Harvard architecture A computer architecture that provides separate memories for instructions
and data (Section 2.1.1).

Hit rate The probability of a memory access being a cache hit (Section 3.4.1).

Host system Any system that is used as an interface to another system (Section 4.6.1,Section 7.2).

Huffman coding A method of data compression (Section 3.7.1).

Hyperperiod The least common multiple of the periods in a system (Section 6.1.6).

I2C bus A serial bus for distributed embedded systems (Section 8.2.1).

IEEE 1394 A high-speed serial network for peripherals (Section 4.5.3).

Immediate operand An operand embedded in an instruction rather than fetched from another
location (Section 2.2.2).

Induction variable elimination A loop optimization technique that eliminates references to
variables derived from the loop control variable (Section 5.7.1).

Initiation time The time at which a process actually starts to execute (Section 6.1.4).

Instruction-level simulator A CPU simulator that is accurate to the level of the programming
model but not to timing (Section 4.6.2).

Instruction set The definition of the operations performed by a CPU (Introduction of Chapter 2).

Internet A worldwide network based on the Internet Protocol (Section 8.4.1).

Internet appliance An information system that makes use of the Internet (Section 8.4).

Internet-enabled embedded system Any embedded system that includes an Internet interface
(Section 8.4).

Internet Protocol A packet-based protocol (Section 8.4.1).

Interpreter A program that executes a given program by analyzing a high-level description of the
program at execution time (Section 5.5.9).

Interprocess communication A mechanism for communication between processes (Sec-
tion 6.4).

Interrupt A mechanism that allows a device to request service from the CPU (Section 3.1.4).

Glossary 481

Interrupt handler A routine called upon an interrupt to service the interrupting device
(Section 3.1.4).

Interrupt priority Priorities used to determine which of several interrupts gets attention first
(Section 3.1.4).

Interrupt vector Information used to select which segment of the program should be used to
handle the interrupt request (Section 3.1.4).

I/O Input/output (Section 3.1).

IP See Internet Protocol.

ISO 9000 A series of international standards for quality process management (Section 9.5.1).

Iteration vector A specification of the loop iteration variable values that describe a particular
iteration of a set of nested loops (Section 5.6.2).

JIT compiler A just-in-time compiler; compiles program sections on demand during execution
(Section 5.5.9).

L1 cache See first-level cache.

L2 cache See second-level cache.

label In assembly language, a symbolic name for a memory location (Section 2.1.2).

LCD Liquid-crystal display (Section 4.3.5).

LED Light emitting diode (Section 4.3.4).

Lightweight process A process that shares its memory spaces with other processes.

Line replaceable unit In avionics, an electronic unit that corresponds to a functional unit, such
as a flight instrument (Section 8.5.2).

Linker A program that combines multiple object program units, resolving references between
them (Section 5.3.2).

Linux A well-known, open-source version of Unix.

Little-endian A data format in which the low-order byte is stored in the lowest bits of the word
(Section 2.2.1).

Load balancing Adjusting scheduling and allocation to even out system load in a network
(Section 8.3.1).

Loader A program that loads a given program into memory for execution (Section 5.3).

Load map A description of where object modules should be placed in memory (Section 5.3.2).

Load-store architecture An architecture in which only load and store operations can be used
to access data and ALU, and other instructions cannot directly access memory (Section 2.2.2).

Logic analyzer A machine that captures multiple channels of digital signals to produce a timing
diagram view of execution (Section 4.6.2).

Longest path The path through a weighted graph that gives the largest total sum of weights
(Section 7.3.1).

Loop nest A set of loops, one inside the other (Section 5.7.2).

Loop unrolling Rewriting a loop so that several instances of the loop body are included in a
single iteration of the modified loop (Section 5.5.4).

LRU See line replaceable unit.

482 Glossary

Masking In interrupts, causing lower-priority interrupts to be held in order to service
higher-priority interrupts (Section 3.1.4).

Memory controller A logic unit designed as an interface between DRAM and other logic
(Section 4.2.2).

Memory management unit A unit responsible for translating logical addresses into physical
addresses (Section 3.4.2).

Memory-mapped I/O Performing I/O by reading and writing memory locations that correspond
to device registers (Section 3.1.2).

Memory mapping Translating addresses from logical to physical form (Section 3.4.2).

Message delay The delay required to send a message on a network with no interference
(Section 8.3).

Message passing A style of interprocess communication (Section 6.4, Section 8.1.4).

Methodology Used to describe an overall design process (Section 1.2, Section 9.1).

Microcontroller A microprocessor that includes memory and I/O devices, often including
timers, on a single chip (Section 1.1).

Miss rate The probability that a memory access will be a cache miss (Section 3.4.1).

MMU See memory management unit.

Motion vector A vector describing the displacement between two units of an image
(Section 7.9.1).

Multihop network A network in which messages may go through an intermediate PE when
traveling from source to destinations.

Multiprocessor A computer system that includes more than one processing element (Introduc-
tion of Chapter 7).

Multirate Operations that have different deadlines, causing the operations to be performed at
different rates (Section 1.1, Section 6.1.2).

Network A system for communicating between components (Introduction of Chapter 8).

Network layer In the OSI model, the layer that provides end-to-end service (Section 8.1.2).

n-key rollover Reading the correct sequence of key depressions when keys are depressed
simultaneously (Section 4.3.3).

NMI See nonmaskable interrupt.

Nonblocking communication Interprocess communication that allows the sender to continue
execution after sending a message (Section 6.4).

Nonfunctional requirements Requirements that do not describe the logical behavior of the
system; examples include size, weight, and power consumption (Section 1.2.1, Section 9.2).

Nonmaskable interrupt An interrupt that must always be handled,independent of other system
activity (Section 3.1.4).

Object A program unit that includes both internal data and methods that provide an interface to
the data (Section 1.3).

Object code A program in binary form (Section 5.3).

Object oriented Any use of objects and classes in design;can be applied at many different levels
of abstraction (Section 1.3).

Glossary 483

Observability The ability to determine a portion of system state during testing.

Operating system A program responsible for scheduling the CPU and controlling access to
devices (Introduction of Chapter 6).

Origin The starting address of an assembly language module.

OSI model A model for levels of abstraction in networks (Section 8.1.2).

Overhead In operating systems, the CPU time required for the operating system to switch
contexts (Section 6.1.6).

P() Traditional name for the procedure that takes a semaphore (Section 6.4.1).

Page fault A reference to a memory page not currently in physical memory (Section 3.4.2).

Page mode An addressing mechanism for RAMs (Section 4.2.2).

Paged addressing Division of memory into equal-sized pages (Section 3.4.2).

Partitioning Dividing a functional description into smaller modules that can be separately
implemented.

PC 1. In computer architecture, see program counter. 2. Personal computer (Section 4.5.3).

PC sampling Generating a program trace by periodically sampling the PC during execution
(Section 5.6.2).

PCI A high-performance bus for PCs and other applications (Section 4.5.3).

PC-relative addressing An addressing mode that adds a value to the current PC (Section 2.2.3).

PE See processing element.

Peek A high-level language routine that reads an arbitrary memory location (Section 3.1.2).

Performance The speed at which operations occur (Section 1.2).

Period In real-time scheduling, a periodic interval of execution (Section 6.1.3).

Physical layer In the OSI model, the layer that defines electrical and mechanical properties
(Section 8.1.2).

Pipeline A logic structure that allows several operations of the same type to be performed simulta-
neously on multiple values,with each value having a different part of the operation performed
at any one time (Section 3.5.1).

PLC See program location counter.

Platform Hardware and associated software that is designed to serve as the basis for a number
of different systems to be implemented.

Poke A high-level language routine that writes an arbitrary location (Section 3.1.2).

Polling Testing one or more devices to determine whether they are ready (Section 3.1.3).

POSIX A standardized version of Unix.

Post-indexing An addressing mode in which an index is added to the base address after the fetch
(Section 2.1.2).

Power Energy per unit time (Section 3.6).

Power-down mode A mode invoked in a CPU that causes the CPU to reduce its power
consumption (Section 3.6).

Power management policy A scheme for making power management decisions (Section 6.6).

484 Glossary

Power state machine A finite-state machine model for the behavior of a component under power
management (Section 3.6).

Predictive shutdown A power management technique that predicts appropriate times for
system shutdown (Section 6.6).

Preemptive multitasking A scheme for sharing the CPU in which the operating system can
interrupt the execution of processes (Section 6.2).

Presentation layer In the OSI model, the layer responsible for data formats (Section 8.1.2).

Priority-driven scheduling Any scheduling technique that uses priorities of processes to
determine the running process (Section 6.3).

Priority inversion A situation in which a lower-priority process prevents a higher-priority
process from executing (Section 6.3.4).

Procedure A programming language construct that allows a single piece of code to be called at
multiple points in the program (Section 2.2.3). Generally, a synonym for subroutine; see also
function.

Procedure call stack A stack of records for currently active processes (Section 2.2.3).

Procedure linkage A convention for passing parameters and other actions required to call a
procedure (Section 2.2.3).

Process A unique execution of a program (Introduction of Chapter 6).

Process control block A record that holds the context or state of a process (Section 6.2.1).

Processing element A component that performs a computation under the coordination of the
system (Section 7.2, Introduction of Chapter 8).

Profiling A procedure for counting the relative execution times of different parts of a program
(Section 5.7.3).

Program counter A common name for the register that holds the address of the currently
executing instruction (Section 2.1.1).

Program location counter A variable used by an assembler to assign memory addresses to
instructions and data in the assembled program (Section 5.3.1).

Programming model The CPU registers visible to the programmer (Section 2.1.1).

Pseudo-op An assembly language statement that does not generate code or data (Section 2.1.2,
Section 5.3.1).

Quality assurance A process for ensuring that systems are designed and built to high quality
standards (Section 9.5).

RAM See random-access memory.

Random-access memory A memory that can be addressed in arbitrary order (Section 4.2.2).

Random testing Testing a program using randomly generated inputs (Section 5.10.2).

RAS See row address select.

Raster scan (or order) display A display that writes pixels by rows and columns (Sec-
tion 4.3.5).

Rate Inverse of period (Section 6.1.3).

Rate-monotonic scheduling A fixed-priority scheduling scheme (Section 6.3.1).

Reactive system A system designed to react to external events (Section 5.4.2).

Glossary 485

Read-only memory A memory with fixed contents (Section 4.2.3).

Real time A system that must perform operations by a certain time (Section 1.1).

Real-time operating system An operating system designed to be able to satisfy real-time
constraints (Introduction of Chapter 6).

Re-entrancy The ability of a program to be executed multiple times, using the same memory
image without error.

Refresh Restoring the values kept in a DRAM (Section 4.2.2).

Register Generally, an electronic component that holds state. In the context of computer pro-
gramming, storage internal to the CPU that is part of the programming model (Section 2.1.1).

Register allocation Assigning variables to registers (Section 5.5.5).

Register-indirect addressing Fetching from a first memory location to find the address of the
memory location that contains the operand (Section 2.2.2).

Regression testing Testing hardware or software by applying previously used tests (Sec-
tion 5.10.2).

Relative address An address measured relative to some other location, such as the start of an
object module (Section 5.3).

Release time The time at which a process becomes ready to execute (Section 6.1.3).

Repeat In instruction sets, an instruction that allows another instruction or set of instructions to
be repeated in order to create low-overhead loops (Section 2.3.4).

Requirements An informal description of what a system should do (Section 1.2). A precursor to
a specification.

Reservation table A hardware technique for scheduling instructions (Section 5.5.6).

Response time The time span between the initial request for a process and its completion
(Section 6.3.1).

RISC Reduced instruction set computer (Section 2.1).

RMA Rate-monotonic analysis, another term for rate-monotonic scheduling.

Rollover Reading multiple keys when two keys are pressed at once (Section 4.3.3).

ROM See read-only memory.

Row address select A DRAM signal that indicates the row part of the address is being presented
(Section 4.2.2).

RTOS See real-time operating system.

Saturation arithmetic An arithmetic system that provides a result at the maximum/minimum
value on overflow/underflow.

Scheduling Determining the time at which an operation will occur (Section 7.3.2).

Scheduling overhead The execution time required to make a scheduling decision (Section 6.3.1,
Section 6.3.4).

Scheduling policy A methodology for making scheduling decisions (Section 6.3.1).

SDL A software specification language (Section 9.3.1).

Second-level cache A cache after the first-level cache but before main memory (Section 3.4.1).

Segmented addressing Dividing memory into large, unequal-sized segments (Section 3.4.2).

486 Glossary

Semaphore A mechanism for coordinating communicating processes (Section 6.4.1).

Sensor An input device that reads a physical value (Section 8.1).

Sequence diagram A UML diagram type that shows how objects communicate over time using
a timeline (Section 1.3.2). See also collaboration diagram.

Session layer In the OSI model, the layer responsible for application dialog control (Sec-
tion 8.1.2).

Set-associative cache A cache with multiple sets (Section 3.4.1).

Set-top box A system used for cable or satellite television reception.

Shared memory A communication style that allows multiple processes to access the same
memory locations (Section 6.4).

Signal 1. A Unix interprocess communication method (Section 6.4.3). 2. A UML stereotype for
communication (Section 6.4.3).

Single-assignment form A program that writes to each variable once at most (Section 5.2.1).

Single-hop network A network in which messages can travel from one PE to any other PE
without going through a third PE.

Slow return In the C55x, a procedure return that the stack to store certain values, providing a
procedure return than is provided by the fast return (Section 2.3.4).

Software interrupt See trap.

Software pipelining A technique for scheduling instructions in loops (Section 5.5.6).

Specification A formal description of what a system should do (Section 1.2). More precise than
a requirements document.

Speedup The ratio of system performance before and after a design modification (Section 7.3.1).

Spill Writing a register value to main memory so that the register can be used for another purpose
(Section 5.5.5).

Spiral model A design methodology in which the design iterates through specification, design,
and test at increasingly detailed levels of abstraction (Section 9.1.2).

SRAM See static random-access memory.

Stable In logic timing analysis, a signal whose value is not changing at a particular moment in
time (Section 4.1.1).

Stack pointer Points to the top of a procedure call stack (Section 5.4.2).

Statecharts A specification technique that uses compound states (Section 9.3.1).

State machine Generally, a machine that goes through a sequence of states over time. May be
implemented in software (Section 1.3.2, Section 5.1.1).

State mode A logic analyzer mode that provides reduced timing resolution in return for longer
time spans (Section 4.6.2).

Static power management A power management technique that does not consider the current
CPU behavior (Section 3.6).

Static random-access memory A RAM that consumes power to continuously maintain its stored
values (Section 4.2.2).

Static priority A scheduling policy in which process priorities are fixed (Section 6.3).

Glossary 487

Streaming data A sequence of data values that is received periodically, such as in digital signal
processing (Section 2.1.1).

Strength reduction Replacing an operation with another equivalent operation that is less
expensive (Section 5.7.1).

Subroutine A synonym for procedure (Section 2.2.3).

Successive refinement A design methodology in which the design goes through the levels of
abstraction several times, adding detail in each refinement phase (Section 9.1.2).

Superscalar An execution method that can perform several different instructions simultaneously.

Supervisor mode A CPU execution mode with unlimited privileges (Section 3.2.1). See also user
mode.

Symbol table Generally, a table relating symbols in a program to their meaning; in an assembler,
a table giving the locations specified by labels (Section 5.3.1).

Synchronous DRAM A memory that uses a clock (Section 4.2.2).

System-on-silicon A single-chip system that includes computation, memory, and I/O.

Tag The part of a cache block that gives the address bits from which the cache entry came
(Section 3.4.1).

Target system A system being debugged with the aid of a host (Section 4.6.1).

Task graph A graph that shows processes and data dependencies among them (Section 6.4.2).

TCP See Transmission Control Protocol.

TDMA See Time Divison Multiple Access.

Test-and-set A hardware primitive, commonly used to implement semaphores, that reads a
memory location and changes it without allowing another intervening access to the location
(Section 6.4.1).

Testbench A setup used to test a design; may be implemented in software to test other software
(Section 4.6.1).

Testbench program A program running on a host used to interface to a debugger that runs on
an embedded processor (Section 4.6.1).

Thread See lightweight process.

Time Division Multiple Access A scheduling policy that divides the schedule into time slots
(Section 6.1.6).

Timer A device that measures time from a clock input (Section 4.3.1).

Timing constraint A relationship among two or more events on signals in a logic network
(Section 4.1.1).

Timing diagram A diagram that shows the relationships between signal transitions,possibly with
arrows showing timing constraints (Section 4.1.1).

Timing mode A logic analyzer mode that provides increased timing resolution (Section 4.6.2).

TLB See translation lookaside buffer.

Top–down design Designing from higher levels of abstraction to lower levels of abstraction
(Section 1.2).

Touchscreen A combination display and input device that allows pointing (Section 4.3.6).

Trace A record of the execution path of a program (Section 5.6.2).

488 Glossary

Trace-driven analysis Analyzing a trace of a program’s execution (Section 5.6.2).

Translation lookaside buffer A cache used to speed up virtual-to-physical address translation
(Section 3.4.2).

Transmission Control Protocol A connection-oriented protocol built upon the IP (Sec-
tion 8.4.1).

Transport layer In the OSI model, the layer responsible for connections (Section 8.1.2).

Trap An instruction that causes the CPU to execute a predetermined handler (Section 3.2.3).

UART Universal Asynchronous Receiver/Transmitter, a serial I/O device (Section 3.1.1).

UML See Unified Modeling Language.

Unified cache A cache that holds both instructions and data (Section 3.4.1).

Unified Modeling Language A widely used graphical language that can be used to describe
designs at many levels of abstraction (Section 1.3).

Unrolled schedule A schedule whose length is the hyperperiod (Section 6.1.6).

Usage scenario A description of how a system will be used (Section 9.5.2).

USB Universal Serial Bus, a high-performance serial bus for PCs and other systems.

User mode A CPU execution mode with limited privileges (Section 3.2.1). See also supervisor
mode.

Utilization In general, the fractional or percentage time that we can effectively use a resource;
the term is most often applied to how processes make use of a CPU (Section 6.1.4).

V() Traditional name for the procedure that releases a semaphore (Section 6.4.1).

Virtual addressing Translating an address from a logical to a physical location (Section 3.4.2).

VLSI Acronym for very large scale integration; generally means any modern integrated circuit
fabrication process (Section 1.1).

Von Neumann architecture A computer architecture that stores instructions and data in the
same memory (Section 2.1).

Wait state A state in a bus transaction that waits for the response of a memory or device
(Section 4.1.1).

Watchdog timer A timer that resets the system when the system fails to periodically reset the
timer (Section 4.3.1).

Waterfall model A design methodology in which the design proceeds from higher to lower levels
of abstraction (Section 9.1.2).

Way A bank in a cache (Section 3.4.1).

White-box testing See clear-box testing.

Word The basic unit of memory access in a computer (Section 2.2.1).

Working set The set of memory locations used during a chosen interval of a program’s execution
(Section 3.4.1).

Worst-case execution time The longest execution time for any possible set of inputs (Sec-
tion 5.6).

Write-back Writing to main memory only when a line is removed from the cache (Section 3.4.1).

Write-through Writing to main memory for every write into the cache (Section 3.4.1).

References

[Aho06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Principles,
Techniques, and Tools, second edition. Reading, MA: Addison-Wesley, 2006.

[Ald73] Robin Alder, Mark Baker, and Howard D. Marshall,“The logic analyzer: a new instrument
for observing logic signals,”Hewlett-Packard Journal 25(2) (1973): 2–16.

[Ale05] Aleph One, 2005 http://www.aleph1.co.uk/yaffs.

[ARM99A] ARM Limited, AMBA (TM) Specification (Rev 2.0), 1999, http://www.arm.com.

[ARM99B] ARM Limited, ARM7TDMI-S Technical Reference Manual,1999,http://www.arm.com.

[Aus04] Todd Austin, David Blaauw, Scott Mahlke,Trevor Mudge, Chaitali Chakrabarti, and Wayne
Wolf,“Mobile supercomputers,” IEEE Computer 37(5) (2004): 81–83.

[Ban93] Uptal Banerjee, Loop Transformations for Restructuring Compilers: The Foundations.
Boston: Kluwer Academic Publishers, 1993.

[Ban94] Uptal Banerjee, Loop Parallelization. Boston: Kluwer Academic Publishers, 1994.

[Ban95] Amir Ban,“Flash file system,”U.S. Patent 5,404,485, April 4, 1995.

[Bar07] Richard Barry, 2007 http://www.freertos.org.

[Bay76] Bryce E. Bayer,“Color imaging array,”U.S. Patent 3,971,065, July 20, 1976.

[Bei84] Boris Beizer, Software System Testing and Quality Assurance. New York:Van Nostrand
Reinhold, 1984.

[Bei90] Boris Beizer, Software Testing Techniques, 2nd edition. New York: Van Nostrand
Reinhold, 1990.

[Ben00] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for system-
level dynamic power management,” IEEE Transactions on VLSI Systems 8(3) (2000): 299–316.

[Bod95] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L. Seitz,
Jakov N. Seizovic, and Wen-King Su,“Myrinet—a gigabit-per-second local-area network,” IEEE
Micro February (1995): 29–36.

[Boe87] Barry W. Boehm, “A spiral model of software development and enhancement,” in Soft-
ware Engineering Project Management, 1987, pp. 128–142. Reprinted in Richard H. Thayer
and Merlin Dorfman, eds., System and Software Requirements Engineering, Los Alamitos,
CA: IEEE Computer Society Press, 1990.

[Boo91] Grady Booch, Object-Oriented Design. Redwood City, CA: Benjamin/Cummings, 1991.

[Boo99] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling Language
User Guide. Reading, MA: Addison-Wesley, 1999.

[Bos07] Robert Bosch GMBH, Automotive Electrics Automotive Electronics, 5th edition.
Cambridge, MA: Bentley Publishers, 2007.

[Cal00] Timothy J. Callahan, John R. Hauser, and John Wawrzynek, “The Garp architecture and
C compiler,” IEEE Computer 33(4) (2000): 62–69.

[Cat98] Francky Catthoor, Sven Wuytack, Eddy De Greef, Florin Balasa, Lode Nachtergaele, and
Arnout Vandecappelle, Custom Memory Management Methodology: Exploration of Memory

489

490 References

Organization for Embedded Multimedia System Design. Norwell, MA: Kluwer Academic
Publishers, 1998.

[Cha92] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen, “Low-power CMOS
digital design,” IEEE Journal of Solid-State Circuits 27(4) (1992): 473–484.

[Chi94] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli,
“Hardware/software co-design of embedded systems,” IEEE Micro 14(4) (1994): 26–36.

[Cho85] Tsun S. Chow, Tutorial: Software Quality Assurance: A Practical Approach. Silver
Spring, MD: IEEE Computer Society Press, 1985.

[Cir04A] Cirrus Logic, “CRD7410-CD18 User’s Guide,” DS620UMC2, February 2004, http://
www.cirrus.com.

[Cir04B] Cirrus Logic, “CS7410 CD/MP3/WMA/AAC Audio Controller,” DS553PP3, June 2004,
http://www.cirrus.com.

[Coh81] Danny Cohen, “On holy wars and a plea for peace,” Computer 14(10) (1981): 48–54.

[Col97] Robert R. Collins, “In-circuit emulation,” Dr.Dobb’s Journal September (1997):111–113.

[Cra97] Timothy Cramer, Richard Friedman,Terrence Miller, David Seberger, Robert Wilson, and
Mario Wolczko, “Compiling Java just in time,” IEEE Micro May/June (1997): 36–43.

[Cus91] Michael A. Cusumano, Japan’s Software Factories. New York: Oxford University Press,
1991.

[Dah00] Tom Dahlin, “Reach out and touch: designing a resistive touch screen,” Circuit Cellar,
114 (2000): 20–25.

[Dav90] Alan M. Davis, Software Requirements: Analysis and Specification. Englewood Cliffs,
NJ: Prentice Hall, 1990.

[DeM01] Giovanni De Micheli,Rolf Ernst, and Wayne Wolf, eds.,Readings in Hardware/Software
Co-Design, Morgan Kaufmann, 2001.

[Dou98] Bruce Powel Douglass, Real-Time UML: Developing Efficient Objects for Embedded
Systems. Reading, MA: Addison-Wesley Longman, 1998.

[Dut96] Santanu Dutta and Wayne Wolf, “A flexible parallel architecture adapted to block-
matching motion-estimation algorithms,”IEEE Transactions on Circuits and Systems forVideo
Technology 6(1) (1996): 74–86.

[Dzu05] Dacfey Dzung, Martin Naedele, Thomas P. von Hoff, and Mario Crevatin, “Security
for industrial communication systems,”Proceedings of the IEEE 93(6) (2005): 1152–1177.

[Dec05] Jean-Dominique Decotignie, “Ethernet-based real-time and industrial communications,”
Proceedings of the IEEE 93(6) (2005): 1102–1117.

[Ear97] Richard W. Earnshaw, Lee D. Smith, and Kevin Welton,“Challenges in cross-development,”
IEEE Micro 17(4) July/August (1997): 28–36.

[Ern93] Rolf Ernst, Joerg Henkel, and Thomas Benner, “Hardware-software cosynthesis for
microcontrollers,” IEEE Design and Test of Computers 10(4) (1993): 64–75.

[Fag76] M. E. Fagan,“Design and code inspections to reduce errors in program development,”IBM
Systems Journal 15(3) (1976): 219–248.

References 491

[Fal92] Ohad Falik and Gideon Intrater,“NSC’s Digital Answering Machine Solution,” In Proceed-
ings, ICCD ’92, Los Alamitos, CA: IEEE Computer Society Press, 1992.

[Fel05] Max Felser, “Real-time Ethernet—industry perspective,” Proceedings of the IEEE 93(6)
(2005): 1118–1129.

[Fra88] Phyllis G. Frankl and Elaine J. Weyuker, “An applicable family of data flow testing criteria,”
IEEE Transactions on Software Engineering, 14(10) (1988): 1483–1498.

[Fur96] Steve Furber, ARM System Architecture. Harlow, England: Addison-Wesley, 1996.

[Gar81] John R. Garman,“The ‘bug’ heard ’round the world,” Software Engineering Notes 6(5)
(1981): 3–10.

[Gar94] Sonya Gary, Pete Ippolito, Gianfranco Gerosa, Carl Dietz, Jim Eno, and Hector Sanchez,
“PowerPC 603, a microprocessor for portable computers,” IEEE Design and Test of Computers
11(4) (1994): 14–23.

[Gat94] David A. Gatenby, Paul M. Lee, Randall E. Howard, Kaveh Hushyar, Rich Layendecker,
and John Wesner,“Concurrent engineering:an enabler for fast,high-quality product realization,”
AT & T Technical Journal January/February (1994): 34–47.

[Gup93] Rajesh K. Gupta and Giovanni De Micheli, “Hardware-software cosynthesis for digital
systems,” IEEE Design and Test of Computers 10(3) (1993): 29–40.

[Har87] D. Harel, “Statecharts: a visual formalism for complex systems,” Science of Computer
Programming 8 (1987): 231–274.

[Hel04] Albert Helfrick, Principles of Avionics, 3rd edition. Avionics Communications Inc., 2004.

[Hen94] J. Henkel, R. Ernst, U. Holtmann, and T. Benner, “Adaptation of partitioning and high-
level synthesis in hardware/software co-synthesis.” In Proceedings, ICCAD-94. Los Alamitos,
CA: IEEE Computer Society Press, 1994, pp. 96–100.

[Hen06] John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative
Approach, 4th edition. San Francisco: Morgan Kaufmann, 2006.

[Hor96] Joseph R. Horgan and Aditya P. Mathur,“Software testing and reliability,” Chapter 13. In
Handbook of Software Reliability Engineering,ed. Michael R. Lyu,531–566. LosAlamitos,CA:
IEEE Computer Society Press/McGraw-Hill, 1996.

[How82] W. E. Howden, “Weak mutation testing and the completeness of test cases,” IEEE
Transactions on Software Engineering SE-8(4) (1982): 371–379.

[Huf52] David A. Huffman, “A method for the construction of minimum-redundancy codes,”
Proceedings of the IRE September (1952): 1098–1101.

[Int99] Intel, Intel StrongARM SA-1100 Microprocessor Technical Reference Manual, March
1999, http://www.intel.com.

[Jag95] Dave Jaggar, ed., Advanced RISC Machines Architectural Reference Manual. London:
Prentice Hall, 1995.

[Jen95] Michael G. Jenner, Software Quality Management and ISO 9001: How to Make Them
Work forYou. New York: John Wiley and Sons, 1995.

[Kar06] Holger Karl and Andreas Willig, Protocols and Architectures for Wireless Sensor
Networks. New York: John Wiley and Sons, 2006.

492 References

[Kas79] J. M. Kasson,“The ROLM Computerized Branch Exchange:an advanced digital PBX,”IEEE
Computer June (1979): 24–31.

[Kem98] T. M. Kemp, R. K. Montoye, J. D. Harper, J. D. Palmer, and D. J. Auerbach, “A decom-
pression core for PowerPC,” IBM Journal of Research and Development 42(6) (1998):
807–812.

[Ker88] Brian W. Kernighan and Dennis M. Ritchie,The C Programming Language, 2nd edition.
New York: Prentice Hall, 1988.

[Kog81] Peter M. Kogge,The Architecture of Pipelined Computers. NewYork:McGraw-Hill,1981.

[Kop97] Hermann Kopetz, Real-Time Systems: Design Principles for Distributed Embedded
Applications. Boston: Kluwer Academic Publishers, 1997.

[Lev86] Nancy G. Leveson, “Software safety: Why, what, and how,” Computing Surveys 18(2)
(1986): 125–163.

[Lev93] Nancy G. Leveson and Clark S. Turner,“An investigation of the Therac-25 accidents,” IEEE
Computer July (1993): 18–41.

[Lev94] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon Reese,
“Requirements specification for process-control systems,” IEEE Transactions on Software
Engineering 20(9) (1994): 684–707.

[Li97] Yau-Tsun Steven Li and Sharad Malik,“Performance analysis of embedded software using
implicit path enumeration,” IEEE Transactions on CAD/ICAS 16(12) (1997): 1477–1487.

[Li98] Yanbing Li and Joerg Henkel, “A framework for estimating and minimizing energy dissi-
pation of embedded HW/SW systems.” In Proceedings, DAC ’98. New York:ACM Press, 1998,
pp. 188–193.

[Li99] Yanbing Li and Wayne Wolf, “A task-level hierarchical memory model for system synthesis
of multiprocessors,” IEEE Transactions on CAD 18(10) (1999): 1405–1417.

[Lie98] Clifford Liem and Pierre Paulin,“Compilation techniques and tools for embedded proces-
sor architectures,” Chapter 5. In Hardware/Software Co-Design: Principles and Practice, eds.
J. Staunstrup and W. Wolf, Boston: Kluwer Academic Publishers, 1998.

[Liu73] C. L. Liu and James W. Layland,“Scheduling algorithms for multiprogramming in a hard–
real-time environment,” Journal of the ACM 20(1) (1973): 46–61.

[Liu00] Jane W. S. Liu, Real-Time Systems. Prentice Hall, 2000.

[Los97] Pete Loshin,TCP/IP Clearly Explained, 2nd edition. New York: Academic Press, 1997.

[Lyu96] Michael R. Lyu, ed., Handbook of Software Reliability Engineering. Los Alamitos, CA:
IEEE Computer Society Press/McGraw-Hill, 1996.

[Mal96] Sharad Malik, Wayne Wolf, Andrew Wolfe, Yao-Tsun Steven Li, and Ti-Yen Yen, “Perfor-
mance analysis of embedded systems.”In Hardware-Software Co-Design,eds. G. De Micheli and
M. Sami, Boston: Kluwer Academic Publishers, 1996.

[Mar78] John Marley, “Evolving microprocessors which better meet the needs of automotive
electronics,”Proceedings of the IEEE 66(2) (1978): 142–150.

[McC76] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering
2 (1976): 308–320.

References 493

[McD98] Charles E. McDowell, Bruce R. Montague, Michael R. Allen, Elizabeth A. Baldwin, and
Marcelo E. Montoreano, “Javacam: Trimming Java down to size,” IEEE Internet Computing
May/June (1998): 53–59.

[Met97] Hufeza Metha,Robert Michael Owens,Mary Jane Irwin,Rita Chen,and Debashree Ghosh,
“Techniques for low energy software.” In Proceedings, 1997 International Symposium on
Low Power Electronics and Design. New York: ACM Press, 1997, pp. 72–75.

[Mic00] MicronTechnology, Inc.,“512 Mb Synchronous SDRAM,”2000 http://www.micron.com/
products/dram/sdram.

[Min95] Mindshare, Inc.,Tom Shanley, and Don Anderson, PCI System Architecture, 3rd edition.
Reading, MA: Addison-Wesley, 1995.

[Mor07] Michael J. Morgan, “Boeing B-777,” Chapter 9. In Digital Avionics Handbook, Second
Edition:Avionics Development and Implementation, ed. Cary R. Spitzer, Boca Raton, FL: CRC
Press, 2007.

[Muc97] Steven S. Muchnick, Advanced Compiler Design and Implementation. San Francisco:
Morgan Kaufmann, 1997.

[Mye79] G. Myers, The Art of Software Testing. New York: John Wiley and Sons, 1979.

[Obe99] James Oberg,“Why the Mars probe went off course,” IEEE Spectrum 36(12) December
(1999): 34–39.

[Pat07] David A. Patterson and John L. Hennessy, Computer Organization and Design: The
Hardware/Software Interface, revised third edition. San Francisco: Morgan Kaufmann, 2007.

[Phi89] Philips Semiconductors,“Using the 8XC751 microcontroller as an I2C bus master,”Philips
Application Note AN422, September 1989, revised June 1993. In Application Notes and
Development Tools for 80C51 Microcontrollers, Philips Semiconductors, 1995.

[Phi92] “The I2C bus and how to use it (including specification),” January 1992. In Application
Notes and Development Tools for 80C51 Microcontrollers, Philips Semiconductors, 1995.

[Pil05] Dan Pilone and Neil Pitman,UML 2.0 in a Nutshell. Sebastopol,CA:O’Reilly Media, 2005.

[Pre97] Roger S. Pressman, Software Engineering: A Practitioner’s Approach. New York:
McGraw-Hill, 1997.

[Roc82] Anders Rockström and Roberto Saracco, “SDL–CCITT specification and description
language,” IEEE Transactions on Communication 30(6) (1982): 1310–1318.

[Rum91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen, Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice Hall, 1991.

[Sas91] Steven J. Sasson and Robert G. Hills,“Electronic still camera utilizing image compression
and digital storage,”U.S. Patent 5,016,107, May 14, 1991.

[Sch94] Charles H. Schmauch, ISO 9000 for Software Developers. Milwaukee: ASQC Quality
Press, 1994.

[SEI99] Software Engineering Institute,“Capability Maturity Model (SW-CMM) for Software,”1999,
www.sei.cmu.edu/cmm/cmm.html.

[Sel94] Bran Selic, Garth Gullekson, and Paul T. Ward, Real-Time Object-Oriented Modeling.
New York: John Wiley and Sons, 1994.

494 References

[Sha89] Alan C. Shaw,“Reasoning about time in higher-level language software,”IEEE Transactions
on Software Engineering, 15 (1989): 875–889.

[Shl92] Sally Shlaer and Stephen J. Mellor, Object Lifecycles: Modeling the World in States.
New York: Yourdon Press Computing Series, 1992.

[Spi07] Cary R. Spitzer, ed.,Digital Avionics Handbook, Second Edition: Avionics Development
and Implementation. Boca Raton, FL: CRC Press, 2007.

[Sri94] Amitabh Srivastava and Alan Eustace, “ATOM: A system for building customized pro-
gram analysis tools,” Digital Equipment Corp., WRL Research Report 94/2, March 1994,
http://www.research.digital.com.

[Sta97A] William Stallings,Data and Computer Communication,5th edition. Upper Saddle River,
NJ: Prentice Hall, 1997.

[Sta97B] Joergen Staunstrup and Wayne Wolf, eds., Hardware/Software Co-Design: Principles
and Practice. Boston: Kluwer Academic Publishers, 1997.

[Sto95] Thomas M. Stout and Theodore J. Williams, “Pioneering work in the field of computer
process control,” IEEE Annals of the History of Computing 17(1) (1995): 6–18.

[Str97] Bjarne Stroustrup,The C++ Programming Language, 3rd edition, Reading, MA: Addison-
Wesley Professional, 1997.

[Tay06] Jim Taylor, DVD Demystified, 3rd edition. New York: McGraw Hill, 2006.

[Tex00B] Texas Instruments,TMS320C55x DSP Functional Overview, SPRU312, June 2000.

[Tex01] Texas Instruments, TMS320C55x DSP Programmer’s Guide, Preliminary Draft, docu-
ment SPRU376A, August 2001.

[Tex02] Texas Instruments, TMS320C55x DSP Mnemonic Instruction Set Reference Guide,
document SPRU374G, October 2002.

[Tex04] Texas Instruments, TMS320C55x DSP CPU Reference Guide, document SPRU371F,
February 2004.

[Tiw94] Vivek Tiwari, Sharad Malik, and Andrew Wolfe,“Power analysis of embedded software: a
first step toward software power minimization,”IEEETransactions onVLSI Systems 2(4) (1994):
437–445.

[van97] Albert van der Werf, Font Brüls, Richard Kleinhorst, Erwin Waterlander, Matt Verstraeler,
and Thomas Friedrich,“I.McIC: a single-chip MPEG2 video encoder for storage,” In ISSCC ’97
Digest of Technical Papers. Castine, ME: John W. Wuorinen, 1997, pp. 254–255.

[Wal97] Dave Walsh, “Reducing system cost with software modems,” IEEE Micro July/August
(1997): 37–55.

[Wal07] Randy Walter and Chris Watkins, “Genesis Platform,” Chapter 12. In Digital Avionics
Handbook, Second Edition:Avionics Development and Implementation, ed. Cary R. Spitzer.
Boca Raton, FL: CRC Press, 2007.

[Whi72] Thomas M. Whitney, France Rode, and Chung C. Tung, “The ‘powerful pocketful’: an
electronic calculator challenges the slide rule,”Hewlett-Packard Journal (1972): 2–9.

[Wol92] Wayne Wolf,“Expert opinion: in search of simpler software integration,” IEEE Spectrum
29(1) (1992): 31.

References 495

[Wol08] Wayne Wolf, Modern VLSI Design: IP-Based System Design, 4th edition. Upper Saddle
River, NJ: Prentice Hall, 1998.

[Yan89] Kun-Min Yang, Ming-Ting Sun, and Lancelot Wu,“A family of VLSI designs for the motion
compensation block-matching algorithm,” IEEE Transactions on Circuits and Systems 36(10)
(1989): 1317–1325.

[Zha04] Feng Zhao and Leonidas Guibas,Wireless Sensor Networks: An Information Processing
Approach. San Francisco: Morgan Kaufmann, 2004.

This page intentionally left blank

Index

A
A/D converter, see Analog/digital converter
Absolute address, 221, 475
AC0–AC3, 76, 475
Accelerator, see Multiprocessors
Accumulator, 76, 475
Accumulator architecture, 76
Ack, 154, 475
ACPI, see Advanced Configuration and

Power Interface
Activation record, 75, 475
Active class, 315, 475
Active low, 157, 475
Active matrix, 174
Active object, 315
Actuator, 398, 475
Adaptive differential pulse code modulation

(ADPCM), 336, 475
ADC, see Analog/digital converter
Address translation, 119–123
Ad hoc network, 426–427
ADPCM, see Adaptive differential pulse

code modulation
Advanced Configuration and Power Interface

(ACPI), 335, 475
Aggregation, 24
Alarm clock design

component design and testing, 203–204
requirements, 196–198
specification, 198–200
system architecture, 200–203
system integration and testing, 204

Allocation, 364–367, 475
AMBA bus, 165–166
Analog/digital (A/D) converter, 171, 475
AND/OR table, 450, 475
APCS, see ARM Procedure Call Standard
Application layer, 400, 475
Application-specific integrated

circuit (ASIC), 475
Arbitration, distributed systems, 402
Architectural framework, 357
Architecture, embedded computer system

design, 18–20
ARM processor

AMBA bus, 165–166
assembler, 225
cache, 119
data operations, 61–69
execution time, 127–128
flow of control, 69–76

instructions, 59
interrupts, 109–110
memory management unit, 124
memory-mapped I/O, 94
organization, 60
pipeline, 125

ARM Procedure Call Standard (APCS), 234
Array padding, 239, 260–261
ASIC, see Application-specific integrated

circuit
Aspect ratio, 166, 192, 475
Assembler, 58, 222–225, 475
Assembly language, features, 58
Association, 24
Asynchronous event, 475
Asynchronous input, 296
Atomic operation, 328, 475
Attributes, 22
Auto-indexing, 68, 475
Automobile engine controller, multirate

system example, 296–298
Average-case execution time, 250, 475

B
Bandwidth, 190
Bank, 116, 475
Base class, Unified Modeling Language, 25
Baseline packet, 34
Base-plus-offset addressing, 68, 475
Basic Input/Output System (BIOS), 181, 476
Basis paths, 271, 475
Best-case execution time, 250, 475
Best-effort routing, 418, 475
Big-endian, 60, 476
BIOS, see Basic Input/Output System
Bit rate, 114
Black-box testing, 276–277, 476
Block, cache, 115
Block diagram, embedded computer

system design, 18
Blocking communication, 326, 476
Blocking network, 403
Block motion estimation, 384
Boot-block flash, 169, 476
Bottom-up design, 12, 476
Bounce, 172, 476
Branch penalty, 126
Branch table, 476
Branch target, 69, 476
Branch testing, 272–273, 476
Breakpoint, 184–185, 476

497

498 Index

Bridge, 163, 476
Bundle, 155, 476
Burst transfer, 159, 191, 476
Bus, 153, 476

AMBA bus, 165
CAN bus, 422–424
component interfacing

devices, 176–177
memory, 176

direct memory access, 160–162
performance bottlenecks in systems,

193–194
protocols, 154–160
system configurations, 162–165

Bus grant, 161, 476
Bus master, 162, 476
Bus request, 161, 476
Bus transaction, 408
Busy-wait I/O, 95–96, 476

C
C55x, see TI C55x DSP
Cache, 113–119, 476

scheduling effects, 332–333
software performance optimization,

259–261
Cache controller, 113
Cache hit, 113, 476
Cache miss, 113–114, 476
Cache miss penalty, 128, 476
Call event, 28
CAN bus, 422–424, 476
Capability Maturity Model (CMM), 461, 476
Capacity miss, 114, 476
Carrier Sense Multiple Access with Collision

Detection (CSMA/CD), 411–412
CAS, see Column address select
CD, multiprocessor systems
CDFG, see Control/data flow graph
Cell phone, multiprocessors, 373–375
Central office, 337
Central processing unit (CPU), 477

bus, see Bus
co-processors, 112–113
computer architecture, 55–56
data compressor design

algorithm, 134–136
object-oriented design in

C++, 139–145
requirements, 134
specification, 136–139
testing, 145–146

embedded computer system layer, 10
exceptions, 111–112

memory
cache, 113–119
memory manage units and address

translation, 119–123
metrics, 302–303
performance

caching, 128–129
pipelining, 124–128

power consumption, 129–134
programming input and output

busy-wait I/O, 95–96
I/O devices, 92–93
I/O instructions, 93
interrupts

copying characters from I/O, 98–103
debugging code, 103–104
overhead, 108–109
overview, 96–98
priorities, 104–108
vectors, 104

memory-mapped I/O, 93–94
supervisor mode, 111
system-level performance analysis, 189–194
traps, 112

Certification, aviation electronics, 425
Changing signal, 477
Changing state, 156
Circular buffer, 212–213, 477
CISC, see Complex instruction set computer
Class, 477

relationship with objects, 24
Unified Modeling Language, 23–24

Class diagram, Unified Modeling Language,
471, 477

Clear-box testing, 268–276, 477
CMM, see Capability Maturity Model
CMOS, see Complementary metal oxide

semiconductor
Code motion, 257–258, 477
Coding alphabet, 337
Cold miss, see Compulsory miss
Collaboration diagram, Unified Modeling

Language, 35, 473, 477
Column address select (CAS), 167, 477
Communication link, 398, 477
Compilation

compiler understanding and using, 247
data structure, 234–235
overview, 227–228
procedures, 233–234
statement translation, 228–233

Complementary metal oxide semiconductor
(CMOS), power consumption, 129

Completion time, 302, 477

Index 499

Complex instruction set computer (CISC),
57, 477

Composition, 24
Compulsory miss, 114, 477
Computational kernel, 356, 477
Computing platform, 477
Conceptual specification, 34–37
Concurrent engineering, 442–446, 477
Conditional, code generation, 231–232
Conflict graph, 242, 477
Conflict miss, 114, 477
Context, 97, 309, 477
Context switching, 309, 330–331
Control stall, 126
Control/data flow graph (CDFG),

215, 217–220, 253, 477
Controllability, 478
Co-processor, 112–113, 478
Co-routine, 478
Counter, 169–170, 478
Counter/timer, 170
CPSR, see Current program status register
CPU, see Central processing unit
CPU time, 302, 478
CRC card, 454–457, 478
Critical instant, 318, 478
Cross-compiler, 184
Crossbar network, 402
Crosspoint, 403
CSMA/CD, see Carrier Sense Multiple Access

with Collision Detection
C switch statement, implementation

in ARM, 71
Current program status register (CPSR),

61–62, 478
Cyber-physical system, 464
Cycle-accurate simulator, 256–257, 478
Cyclomatic complexity, 271, 478
Cyclostatic scheduling, 305

D
DAC, see Digital/analog converter
D/A converter, see Digital/analog converter
Data compressor design

algorithm, 134–136
object-oriented design in C++, 139–145
requirements, 134
specification, 136–139
testing, 145–146

Data flow graph, 215–217, 478
Data flow node, 217
Data flow testing, 274, 478
Data frame, 422
Data link layer, 10, 400, 478

Data payload, 402
Data-push programming, 404–405
Data stall, 126
DCC, see Digital Command Control
DDR, see Double-data rate SDRAM
Dead code elimination, 237, 478
Deadline, 298, 478
Debouncing, 172, 478
Debugging

bus-based computer systems, 184–187
challenges, 187–189
interrupts, 103–104
multiprocessor system, 360

Decision node, 217, 478
Decode, pipeline, 125
Defined variable value, 274
Def-use analysis, 274, 478
Delayed branch, 126, 478
Dense instruction set, 267, 478
Dequeueing, 215
Derived class, Unified Modeling Language, 25
Design flow, 439–446, 478
Design methodology, 478

architecture, 18–20
challenges, 8–9
CRC card, 454–457, 478
design flows, 439–446
formalisms

behavioral description, 27–30
overview, 21–22
structural description, 22–27

hardware and software components, 20
process overview, 11–12
quality assurance

design review, 464–465
example, 458–460
specification verification, 462–464
techniques, 460–462

rationale, 437–439
requirements, 12–17
requirements analysis, 446–447
specification, 17–18

advanced specifications, 451–453
control-oriented specification

languages, 447–451
system analysis and architecture

design, 454–457
system integration, 20–21

Design process, see Design methodology
Design review, 464–465
Device driver, 97
Digital/analog (D/A) converter, 171, 478
Digital camera, multiprocessors, 381–384
Digital Command Control (DCC), model train

controller example, 32–34

500 Index

Digital signal processor (DSP), 55, 478
TI C55x DSP, see TI C55x DSP

DIMM, see Double in-line memory module
Direct-mapped cache, 115–118, 478
Direct memory access (DMA), 160–162,

194, 478
Direct memory access controller, 161
Direct network, 403
Disconnected transfer, 159
Display, 173–174
Distributed embedded system, 478

architecture
components, 398–399
hardware and software, 401–404
message passing programming, 404–405
OSI model, 399–400

examples
automobiles, 422–425
avionics, 425–426
elevator controller design

architecture, 431–433
requirements, 429–430
specification, 430–431
testing, 433
theory, 428–429

sensor networks, 426–427
Internet-enabled systems

applications, 419–420
Internet standards, 417–418
security, 421
types, 416

network-based design, 413–416
network types

Ethernet, 411–413
Fieldbus, 413
I2C bus, 406–410

overview, 397–398
rationale, 399

DMA, see Direct memory access
DNS, see Domain Name Server
Domain Name Server (DNS), 418, 479
Domain testing, 273–274
Double-data rate SDRAM (DDR), 168
Double in-line memory module (DIMM), 169
DRAM, see Dynamic random access memory
DSP, see Digital signal processor
DVD, multiprocessor systems, 375–380
Dynamically linked library, 227, 479
Dynamic power management, 130, 479
Dynamic priority, 316, 479
Dynamic random access memory (DRAM),

167, 479

E
Earliest deadline first (EDF), 320–324, 479
EDF, see Earliest deadline first
EFM encoding, see Eight-to-fourteen encoding
Eight-to-fourteen (EFM) encoding, 378
Elastic buffer, 326–327, 213
Elevator controller design

architecture, 431–433
requirements, 429–430
specification, 430–431
testing, 433
theory, 428–429

Embedded computer system, 1, 479
costs, 5
criteria, 5–6
design

architecture, 18–20
bus-based computer systems

hardware, 179–180
PC platform, 180–183
system architecture, 177–178

challenges, 8–9
formalisms

behavioral description, 27–30
overview, 21–22
structural description, 22–27

hardware and software components, 20
process overview, 11–12
requirements, 12–17
specification, 17–18
system integration, 20–21

embedding, 2–4
functionality, 5
networks, see Distributed embedded system
performance, 10
platforms, 7
programs, see Program design and analysis

Encoded keyboard, 172, 479
Energy, 129, 479
Enq, 154, 479
Enqueueing, 214–215
Entry point, 226, 479
Error injection, 277, 479
Ethernet, 411–413, 479
Evaluation board, 179, 479
Events, Unified Modeling Language, 27–29
Exception, 111–112, 479
Executable binary, 221, 479
Execute

pipeline, 125
state, 303

Execution time, 250, 254
Exponential backoff, 411–412

Index 501

Expression simplification, 236–237, 479
External reference, 226, 479

F
Factory-programmed ROM, 169, 479
Fair arbitration, 402
Fast return, 85, 479
Federated architecture, 426, 479
Fetch, pipeline, 125
Fieldbus, 413
Field-programmable gate array (FPGA),

180, 479
Field-programmable ROM, 169
File Transport Protocol, 418
Finite impulse response (FIR) filter

ARM implementation, 72–73
circular buffer implementation, 213
overview, 72

Finite-state machine, 210
FIR filter, see Finite impulse response filter
First-level cache, 114, 479
Fixed-priority arbitration, 402
Flash memory, 169, 372, 479
FlexRay, 480
Foreground program, 97
Formal technique, 464
Four-cycle handshake, 154, 480
FPGA, see Field-programmable gate array
Fragmentation, 120
Frame buffer, 174
Frame pointer, 233, 480
Frequency-shift keying (FSK), 278
FSK, see Frequency-shift keying
Full-duplex connection, 401
Function, 480
Functional requirements, 13, 446, 480

G
Generalization, 24
Glue logic, 176, 480
Glueless interface, 176–177, 480

H
Handset, cell phone, 373
Handshake, 154, 480
Hardware platform, 399
Hardware/software co-design, 356, 480
Harvard architecture, 56–57, 480
Hit rate, 114, 480
Host system, 183, 356, 480
HTTP, see Hypertext Transport Protocol
Huffman coding, 134–136, 480
Hyperperiod, 304, 480
Hypertext Transport Protocol (HTTP), 418

I
I2C bus, 406–410, 480
ICE, see Microprocessor in-circuit emulator
IEEE 1394, 181, 480
If statement, implementation in ARM, 70
Immediate operand, 63, 480
Implementation, 24
Incidence matrix, 271
Induction variable elimination, 257–259, 480
Initiation time, 302, 480
Inlining, see Procedure inlining
Input/output (I/O), 481

busy-wait I/O, 95–96
devices

A/D and D/A converters, 171
displays, 173–174
keyboard, 171–173
light-emitting diode, 173
timers and counters, 169–171
touchscreen, 175

I/O devices, 92–93
I/O instructions, 93
memory-mapped I/O, 93–94

Instruction set, 55, 480
Instruction-level simulator, 480
Interface, 24
Internet, 417, 480
Internet appliance, 416–421, 480
Internet-enabled embedded system,

416–421, 480
Internet Protocol (IP), 417, 480
Internetworking, 417
Interpreter, 247–248, 480
Interprocess communication, 480

message passing, 329
shared memory communication, 326–328
signals, 329

Interrupt, 480
ARM, 109–110
copying characters from I/O

basic interrupt, 98–99
interrupts with buffers, 99–103

debugging code, 103–104
overhead, 108–109
overview, 96–98
TI C55X, 110

Interrupt acknowledge, 97
Interrupt handler, 96, 481
Interrupt priority, 104–108, 481
Interrupt request, 97
Interrupt vector, 104, 481
I/O, see Input/output
IP, see Internet Protocol
ISO 9000 A, 460, 481
Iteration vector, 481

502 Index

J
Javacam, 420
JIT compiler, see Just-in-time compiler
Jog memory, 379
Just-in-time (JIT) compiler, 247–248, 481

K
Kernel, 308–309
Keyboard, 171–173

L
L1 cache, see First-level cache
L2 cache, see Second-level cache
Label, 58, 481
Latency, 125
LCD, see Liquid-crystal display
Leakage, power consumption, 129
LED, see Light-emitting diode
Lifetime graph, 240
Light-emitting diode (LED), 173, 481
Lightweight process, 294, 481
Line replaceable unit (LRU), 425, 481
Link, Unified Modeling Language, 26
Linker, 225–227, 481
Linux, 481
Liquid-crystal display (LCD), 173–174, 481
Little-endian mode, 60
Live variable, 241
Load balancing, 481
Loader, 221, 481
Load map, 226, 481
Load-store architecture, 61, 481
Logic analyzer, 186–187
Longest path, 363, 481
Longword, 76
Loop-back testing, 282
Loop distribution, 239
Loop fusion, 239
Loop nest, 259, 481
Loop tiling, 239
Loop unrolling, 238–239, 481
LRU, see Line replaceable unit

M
Macroblock, 385
Mask-programmed ROM, 169
Masking, 105, 482
Memory

cache, 113–119
computer architecture, 55–56
devices

organization, 166–167
random-access memory, 167–169
read-only memory, 169

interfacing in bus devices, 176
memory manage units and address

translation, 119–123
shared memory communication, 326–328

Memory controller, 482
Memory management unit (MMU),

119–123, 482
Memory-mapped I/O, 93–94, 482
Memory mapping, 77, 119, 482
Message delay, 414, 482
Message passing, 329, 482
Methodology, 11, 482
Microcontroller, 3, 482
Microprocessor

automobiles, 2–4
classification, 3
designing bus-based computer systems

hardware, 179–180
PC platform, 180–183
system architecture, 177–178

embedded computer system layer, 10
historical perspective, 2–3
rationale for use, 6–8

Microprocessor in-circuit emulator (ICE),
185–186

Miss rate, 114, 482
MMU, see Memory management unit
Mock-up, embedded computer

system design, 13
Model, programmer, 57
Model train controller design

conceptual specification, 34–37
detailed specification, 37–44
Digital Command Control standard,

32–34
overview, 30
requirements, 31–32

Motion vector, 385, 482
MP3 player, multiprocessors, 380–381
Multihop network, 415, 482
Multiple inheritance, Unified Modeling

Language, 26
Multiprocessors, 353, 482

accelerators, 356
architectural framework, 357–360
consumer electronics architecture

flash file systems, 372–373
platforms and operating systems,

371–372
use cases and requirements, 369–371

design examples
CD and DVD systems, 375–380
cell phones, 373–375
digital camera, 381–384
MP3 players, 380–381

Index 503

video accelerator
algorithms, 384–386
architecture, 388–390
component design, 390–392
requirements, 387
specification, 388
system testing, 392

performance analysis
buffering, 368–369
scheduling and allocation effects,

364–367
speedup, 360–364

rationale, 353–355
system integration and debugging, 360

Multirate, 296, 482
Multistage network, 403
Multithreaded system, 360

N
Naked function, 312
Network, 397, 482

distributed embedded system, see
Distributed embedded system

Network availability delay, 414
Network layer, 400, 482
n-key rollover, 173, 482
NMI, see Nonmaskable interrupt
Nonblocking communication, 326, 482
Nonfunctional requirements, 13, 446, 482
Nonmaskable interrupt (NMI), 105, 482
Note, 23

O
Object, 22, 482
Object code, 221, 482
Object oriented, 21, 482

specification, 22
Object-oriented design

data compressor design in C++, 139–145
preemptive real-time operating system, 315

Observability, 483
Off-hook, 338
OGM, see Outgoing message
On-hook, 338
Open System Interconnect (OSI) model, 483

layers, 399–400
Operating system, 293, 483

performance evaluation, 330–333
Operations, 23
Operator scheduling, 242–244
Origin, 223, 483
OSI model, see Open System Interconnect

model
Outgoing message (OGM), 338, 340
Overhead, 306, 483

P
P(), 328, 483
Packet, 401–402
Page fault, 120, 483
Page mode, 483
Paged addressing, 120, 483
Parallelism, 194–196
Partitioning, 178, 483
Passive matrix, 174
PC, see Personal computer; Program counter
PC-relative addressing, 69, 483
PCI, see Peripheral Component Interconnect
PC sampling, 483
PE, see Processing element
Peek, 94, 483
Performance, 11, 13, 483

bus system bottlenecks, 193–194
central processing unit

caching, 128–129
pipelining, 124–128
system-level performance analysis,

189–194
multiprocessor analysis

buffering, 368–369
scheduling and allocation effects,

364–367
speedup, 360–364

operating system evaluation, 330–333
programs, see also Software performance

optimization
elements of performance, 250–254
measurement-driven performance

analysis, 254–257
overview, 248–250

scheduling effects in multiprocessor
system, 364–367

system-level performance analysis
overview, 189–194
parallelism, 194–196

Period, 299, 483
Peripheral Component Interconnect

(PCI), 181, 483
Personal computer (PC), 483

designing bus-based computer systems,
180–183

Physical layer, 399–400, 483
Physics of software, 8
Pipeline, 124–128, 483
Platform, 7, 10, 483
PLC, see Program location counter
PLD, see Programmable logic device
Point-to-point link, 401
Poke, 94, 483

504 Index

Polling, 95, 483
POSIX, 483
Post-indexing, 68
Power, 129, 483
Power consumption

central processing unit, 129–134
optimization

CPUs, 262–266
processes, 333–336

Power-down mode, 130–131, 483
Power management policy, 333, 483
PowerPC 603, energy efficiency, 130–131
Power state machine, 131–132, 484
Predictive shutdown, 334, 484
Preemption, 308–309
Preemptive multitasking, 484
Preexisting system, 464
Presentation layer, 400, 484
Priority-driven scheduling, 484

earliest deadline first scheduling, 320–323
modeling assumptions, 324–325
preemptive real-time operating system,

309–310
rate-monotonic scheduling, 316–320
selection of scheme, 323–324

Priority inversion, 324, 484
Procedure, 73, 484
Procedure call, implementation in ARM, 75–76
Procedure call stack, 75, 233, 484
Procedure inlining, 237–238
Procedure linkage, 75, 233, 484
Process, 293–294, 484

interprocess communication mechanisms
message passing, 329
shared memory communication,326–328
signals, 329

periodic process running, 306–308
power management optimization, 333–336
scheduling, 303–306
timing requirements, 298–302

Process control block, 309, 484
Processing element (PE), 397, 484
Profiling, 261, 484
Program counter (PC), 56, 484
Program design and analysis

assembly, linking, and loading
assemblers, 222–225
linking, 225–227
overview, 220–221

compilation
data structure, 234–235
overview, 227–228
procedures, 233–234
statement translation, 228–233

components for embedded programs

circular buffers, 212–213
queues, 213–215
state machines, 210–212

embedded computer system layer, 10
models

control/data flow graph, 217–220
data flow graph, 215–217

optimization, see also Software
performance optimization

compiler understanding and using, 247
dead code elimination, 237
expression simplification, 236–237
instruction selection, 246–247
interpreter, 247–248
just-in-time compilation, 247–248
loop transformations, 238–239
procedure inlining, 237–238
register allocation, 239–244
scheduling, 244–245

performance analysis
elements of performance, 250–254
measurement-driven performance

analysis, 254–257
overview, 248–250

power optimization, 262–266
size analysis and optimization, 266–267
validation and testing

black-box testing, 276–277
clear-box testing, 268–276
evaluating function tests, 277–278
overview, 267–268

Program location counter (PLC), 222, 484
Programmable logic device (PLD), 180
Programming model, 57, 484
Prototype, 463
Prototyping language, 463–464
Pseudo-op, 58, 484

Q
QA, see Quality assurance
Quality assurance (QA), 484

design review, 464–465
example, 458–460
specification verification, 462–464
techniques, 460–462

Queue, 213–215

R
RAM, see Random-access memory
Random testing, 276, 484
Random-access memory (RAM), 167–168, 484
RAS, see Row address select
Raster order display, 174, 484
Raster scan display, 174, 484

Index 505

Rate, 299, 484
Rate-monotonic analysis (RMA), 316–318, 485
Rate-monotonic scheduling (RMS), 316–320,

323–325, 484
Re-entrancy, 485
Reactive system, 484
Read-only memory (ROM), 169, 485
Ready state, 303
Real time, 2, 10, 485
Real-time operating system (RTOS), 294, 485

preemptive systems
object-oriented design, 315
preemption, 308–309
priority-driven scheduling, 309–310
processes and context, 310–315

Reduced instruction set computer (RISC),
3, 57, 485

Refresh, 167, 485
Register, 56, 485
Register allocation, 239–244, 485
Register-indirect addressing, 64, 485
Regression testing, 276–277, 485
Relationships, 24
Relative address, 221, 485
Release time, 298, 485
Repeat, 84, 485
Requirements, 485

alarm clock design, 196–198
analysis example, 15–17
data compressor design, 134
design methodology, 446–447
elevator controller design, 429–430
embedded computer system design, 11–17
form, 14–15
functional versus nonfunctional, 446
model train controller example, 31–32
software modem design, 279–280
telephone answering machine

design, 338–339
video accelerator design, 387

Reservation table, 245, 485
Response time, 318, 485
RISC, see Reduced instruction set computer
RMA, see Rate-monotonic analysis
RMS, see Rate-monotonic scheduling
Rollover, 173, 485
ROM, see Read-only memory
Round-robin arbitration, 402
Round-robin scheduling, 305
Row address select (RAS), 167, 485
RTOS, see Real-time operating system

S
Saturation arithmetic, 485
Scaffolding code, 146
Scheduling, 244–245, 485

cache effects, 332–333
performance effects in multiprocessor

system, 364–367
states, 303

Scheduling overhead, 306, 485
Scheduling policy, 303–310, 330–336, 485
SCL, see Serial clock line
SDL, 447–448, 485, see also Serial data line
SDR, see Software-defined radio
SDRAM, see Synchronous dynamic random

access memory
Second-level cache, 114, 485
Segmented addressing, 120, 485
Semaphore, 328, 486
Sensor, 398, 486
Sensor networks, 426–427
Sequence diagram, 29–30, 473, 486
Serial clock line (SCL), 406–407
Serial data line (SDL), 406–407
Session layer, 400, 486
Set-associative cache, 116–118, 486
Set-top box, 486
Shared memory, 326–328, 486
Signal, 28, 329–330, 486
SIMM, see Single in-line memory module
Simple Mail Transfer Protocol (SMTP), 418
Simple Network Management Protocol, 419
Single in-line memory module (SIMM), 169
Single threaded system, 360
Single-assignment form, 216, 486
Single-hop network, 415, 486
Slow return, 85, 486
SMTP, see Simple Mail Transfer Protocol
Software-defined radio (SDR), 374
Software interrupt, see Trap
Software modem design

component design and testing, 282
frequency-shift keying, 278–279
requirements, 279–280
specification, 280–281
system architecture, 280–282
system integration and testing, 282

Software performance optimization
cache optimizations, 259–261
loop optimizations, 257–261
strategies, 261–262

Software pipelining, 245, 486
Software scaffolding, 255
Space shuttle, software error, 300–301
Spaghetti code, 178
Specification, 486

506 Index

alarm clock design, 198–200
data compressor design, 136–139
design methodology

advanced specifications, 451–453
control-oriented specification languages,

447–451
elevator controller design, 430–431

language, 464
embedded computer system design,

12, 17–18
software modem design, 280–281
telephone answering machine design,

340–342
verification, 462–464
video accelerator design, 388

Speedup, 360–364, 486
Spill, 242, 486
Spiral model, 440, 486
SRAM, see Static random-access
Stable state, 156, 486
Stack pointer, 233, 486
Statechart, 448–449, 486
State diagram, Unified Modeling Language,

471–472
State machine, 27, 29, 210–212, 486
State mode, 186, 486
Static power management, 130, 486
Static priority, 316, 486
Static random-access (SRAM), 486
Stream-oriented programming, circular

buffers, 212–213
Streaming data, 57, 487
Strength reduction, 257, 259, 487
StrongARM SA-1100

power-saving modes, 132–134
system organization, 182–183

StrongARM SA-1111, system organization,
182–183

Structural description, 22–27
Subroutine, 73, 487
Subscriber line, 337
Successive refinement, 441, 487
Superscalar, 487
Supervisor mode, 111, 487
Symbol table, 222–224, 487
Synchronous dynamic random access

memory (SDRAM), 167–168, 487
System-level performance analysis

overview, 189–194
parallelism, 194–196

T
Table lookup, 281
Tag, 487

Target system, 183, 487
Task

embedded computer system layer, 10
versus process, 294

Task graph, 301, 487
Task set, 301
TCAS II, see Traffic Alert and Collision

Avoidance System II
TCP, see Transmission Control Protocol
TDMA, see Time Division Multiple Access
Telephone answering machine design

component design and testing, 344
requirements, 338–339
specification, 340–342
system architecture, 342–344
system integration and testing, 345
theory, 336–338

Template matching, 246
Test-and-set operation, 327–328, 487
Testbench, 184, 487
Testbench program, 184, 487
Therac-25 medical imaging system, 458–460
Thread, see Lightweight process
Throughput, 125
TI C55x DSP

addressing modes, 78–82
architecture, 76
C coding guidelines, 85–86
cache, 119
data operations, 82–83
flow of control, 83–85
interrupts, 110
pipeline, 125
processor and memory organization, 76–78

Time Division Multiple Access (TDMA),
304, 487

Time-out event, 28–29
Time quantum, 308
Timer, 169–171, 487
Timing constraint, 156, 487
Timing diagram, 156–157, 487
Timing mode, 186, 487
TLB, see Translation lookaside buffer
Toggling, power consumption, 129
Top-down design, 12, 487
Touchscreen, 175, 487
Trace, 255, 487
Trace-driven analysis, 254–256, 488
Traffic Alert and Collision Avoidance System II

(TCAS II), 451–454
Translation lookaside buffer (TLB), 122, 488
Transmission Control Protocol (TCP), 418, 488
Transport layer, 400, 488
Trap, 112, 488
Type certification, aviation electronics, 425

Index 507

U
UART, see Universal Asynchronous

Receiver /Transmitter
UML, see Unified Modeling Language
Unified cache, 119, 488
Unified Modeling Language

(UML), 488
diagram types

class diagram, 471
collaboration diagram, 473
overview, 469–470
sequence diagram, 473
state diagram, 471–472

generalization, 25–26
model train controller example

conceptual specification, 34–37
detailed specification, 37–44
Digital Command Control standard,

32–34
overview, 30
requirements, 31–32

notation, 22–24
object-oriented design, 21–22
primitive elements, 469–470
signals, 329–330

Universal Asynchronous Receiver/Transmitter
(UART), 92–93, 488

Universal Serial Bus (USB), 488
Unrolled schedule, 304, 488
Usage scenario, 464, 488
USB, see Universal Serial Bus
User Datagram Protocol, 418

User mode, 111, 488
Utilization, 303, 319, 488

V
V(), 328, 488
Very large scale integration (VLSI), 488
Video accelerator design

algorithms, 384–386
architecture, 388–390
component design, 390–392
requirements, 387
specification, 388
system testing, 392

Virtual addressing, 119, 488
VLSI, see Very large scale integration
Voltage drop, power consumption, 129
von Neumann architecture, 56, 488

W
Wait state, 159, 303, 488
Watchdog timer, 170, 488
Waterfall model, 439, 488
Way, 116, 488
White balance, 382
White-box testing, see Clear-box testing
Word, 76, 488
Working set, 113, 488
Worm, 421
Worst-case execution time, 250, 488
Write-back, 115, 488
Write-through, 115, 488

This page intentionally left blank

	Front Cover
	About the Author
	Computers as Components
	Copyright Page
	Disclaimer
	Foreword to The First Edition
	Table of Contents
	List of Examples
	Preface to The Second Edition
	Preface to The First Edition
	Chapter 1. Embedded Computing
	Introduction
	1.1 Complex Systems and Microprocessors
	1.1.1 Embedding Computers
	1.1.2 Characteristics of Embedded Computing Applications
	1.1.3 Why Use Microprocessors?
	1.1.4 The Physics of Software
	1.1.5 Challenges in Embedded Computing System Design
	1.1.6 Performance in Embedded Computing

	1.2 The Embedded System Design Process
	1.2.1 Requirements
	1.2.2 Specification
	1.2.3 Architecture Design
	1.2.4 Designing Hardware and Software Components
	1.2.5 System Integration

	1.3 Formalisms for System Design
	1.3.1 Structural Description
	1.3.2 Behavioral Description

	1.4 Model Train Controller
	1.4.1 Requirements
	1.4.2 DCC
	1.4.3 Conceptual Specification
	1.4.4 Detailed Specification
	1.4.5 Lessons Learned

	1.5 A Guided Tour of this Book
	1.5.1 Chapter 2: Instruction Sets
	1.5.2 Chapter 3: CPUs
	1.5.3 Chapter 4: Bus-Based Computer Systems
	1.5.4 Chapter 5: Program Design and Analysis
	1.5.5 Chapter 6: Processes and Operating Systems
	1.5.6 Chapter 7: Multiprocessors
	1.5.7 Chapter 8: Networks
	1.5.8 Chapter 9: System Design Techniques

	Summary
	Further Reading
	Questions
	Lab Exercises

	Chapter 2. Instruction Sets
	Introduction
	2.1 Preliminaries
	2.1.1 Computer Architecture Taxonomy
	2.1.2 Assembly Language

	2.2 ARM Processor
	2.2.1 Processor and Memory Organization
	2.2.2 Data Operations
	2.2.3 Flow of Control

	2.3 TI C55x DSP
	2.3.1 Processor and Memory Organization
	2.3.2 Addressing Modes
	2.3.3 Data Operations
	2.3.4 Flow of Control
	2.3.5 C Coding Guidelines

	Summary
	Further Reading
	Questions
	Lab Exercises

	Chapter 3. CPUs
	Introduction
	3.1 Programming Input and Output
	3.1.1 Input and Output Devices
	3.1.2 Input and Output Primitives
	3.1.3 Busy-Wait I/O
	3.1.4 Interrupts

	3.2 Supervisor Mode, Exceptions, and Traps
	3.2.1 Supervisor Mode
	3.2.2 Exceptions
	3.2.3 Traps

	3.3 Co-Processors
	3.4 Memory System Mechanisms
	3.4.1 Caches
	3.4.2 Memory Management Units and Address Translation

	3.5 CPU Performance
	3.5.1 Pipelining
	3.5.2 Caching

	3.6 CPU Power Consumption
	3.7 Design Example: Data Compressor
	3.7.1 Requirements and Algorithm
	3.7.2 Specification
	3.7.3 Program Design
	3.7.4 Testing

	Summary
	Further Reading
	Questions
	Lab Exercises

	Chapter 4. Bus-Based Computer Systems
	Introduction
	4.1 The CPU Bus
	4.1.1 Bus Protocols
	4.1.2 DMA
	4.1.3 System Bus Configurations
	4.1.4 AMBA Bus

	4.2 Memory Devices
	4.2.1 Memory Device Organization
	4.2.2 Random-Access Memories
	4.2.3 Read-Only Memories

	4.3 I/O Devices
	4.3.1 Timers and Counters
	4.3.2 A/D and D/A Converters
	4.3.3 Keyboards
	4.3.4 LEDs
	4.3.5 Displays
	4.3.6 Touchscreens

	4.4 Component Interfacing
	4.4.1 Memory Interfacing
	4.4.2 Device Interfacing

	4.5 Designing with Microprocessors
	4.5.1 System Architecture
	4.5.2 Hardware Design
	4.5.3 The PC as a Platform

	4.6 Development and Debugging
	4.6.1 Development Environments
	4.6.2 Debugging Techniques
	4.6.3 Debugging Challenges

	4.7 System-Level Performance Analysis
	4.7.1 System-Level Performance Analysis
	4.7.2 Parallelism

	4.8 Design Example: Alarm Clock
	4.8.1 Requirements
	4.8.2 Specification
	4.8.3 System Architecture
	4.8.4 Component Design and Testing
	4.8.5 System Integration and Testing

	Summary
	Further Reading
	Questions
	Lab Exercises

	Chapter 5. Program Design and Analysis
	Introduction
	5.1 Components for Embedded Programs
	5.1.1 State Machines
	5.1.2 Stream-Oriented Programming and Circular Buffers
	5.1.3 Queues

	5.2 Models of Programs
	5.2.1 Data Flow Graphs
	5.2.2 Control/Data Flow Graphs

	5.3 Assembly, Linking, and Loading
	5.3.1 Assemblers
	5.3.2 Linking

	5.4 Basic Compilation Techniques
	5.4.1 Statement Translation
	5.4.2 Procedures
	5.4.3 Data Structures

	5.5 Program Optimization
	5.5.1 Expression Simplification
	5.5.2 Dead Code Elimination
	5.5.3 Procedure Inlining
	5.5.4 Loop Transformations
	5.5.5 Register Allocation
	5.5.6 Scheduling
	5.5.7 Instruction Selection
	5.5.8 Understanding and Using Your Compiler
	5.5.9 Interpreters and JIT Compilers

	5.6 Program-Level Performance Analysis
	5.6.1 Elements of Program Performance
	5.6.2 Measurement-Driven Performance Analysis

	5.7 Software Performance Optimization
	5.7.1 Loop Optimizations
	5.7.2 Performance Optimization Strategies

	5.8 Program-Level Energy and Power Analysis and Optimization
	5.9 Analysis and Optimization of Program Size
	5.10 Program Validation and Testing
	5.10.1 Clear-Box Testing
	5.10.2 Black-Box Testing
	5.10.3 Evaluating Function Tests

	5.11 Software Modem
	5.11.1 Theory of Operation and Requirements
	5.11.2 Specification
	5.11.3 System Architecture
	5.11.4 Component Design and Testing
	5.11.5 System Integration and Testing

	Summary
	Further Reading
	Questions
	Lab Exercises

	Chapter 6. Processes and Operating Systems
	Introduction
	6.1 Multiple Tasks and Multiple Processes
	6.1.1 Tasks and Processes
	6.1.2 Multirate Systems
	6.1.3 Timing Requirements on Processes
	6.1.4 CPU Metrics
	6.1.5 Process State and Scheduling
	6.1.6 Some Scheduling Policies
	6.1.7 Running Periodic Processes

	6.2 Preemptive Real-Time Operating Systems
	6.2.1 Preemption
	6.2.2 Priorities
	6.2.3 Processes and Context
	6.2.4 Processes and Object-Oriented Design

	6.3 Priority-Based Scheduling
	6.3.1 Rate-Monotonic Scheduling
	6.3.2 Earliest-Deadline-First Scheduling
	6.3.3 RMS vs. EDF
	6.3.4 A Closer Look at Our Modeling Assumptions

	6.4 Interprocess Communication Mechanisms
	6.4.1 Shared Memory Communication
	6.4.2 Message Passing
	6.4.3 Signals

	6.5 Evaluating Operating System Performance
	6.6 Power Management and Optimization for Processes
	6.7 Design Example: Telephone Answering Machine
	6.7.1 Theory of Operation and Requirements
	6.7.2 Specification
	6.7.3 System Architecture
	6.7.4 Component Design and Testing
	6.7.5 System Integration and Testing

	Summary
	Further Reading
	Questions
	Lab Exercises

	Chapter 7. Multiprocessors
	Introduction
	7.1 Why Multiprocessors?
	7.2 CPUs and Accelerators
	7.2.1 System Architecture Framework
	7.2.2 System Integration and Debugging

	7.3 Multiprocessor Performance Analysis
	7.3.1 Accelerators and Speedup
	7.3.2 Performance Effects of Scheduling and Allocation
	7.3.3 Buffering and Performance

	7.4 Consumer Electronics Architecture
	7.4.1 Use Cases and Requirements
	7.4.2 Platforms and Operating Systems
	7.4.3 Flash File Systems

	7.5 Design Example: Cell Phones
	7.6 Design Example: Compact DISCs and DVDs
	7.7 Design Example: Audio Players
	7.8 Design Example: Digital Still Cameras
	7.9 Design Example: Video Accelerator
	7.9.1 Algorithm and Requirements
	7.9.2 Specification
	7.9.3 Architecture
	7.9.4 Component Design
	7.9.5 System Testing

	Summary
	Further Reading
	Questions
	Lab Exercises

	Chapter 8. Networks
	Introduction
	8.1 Distributed Embedded Architectures
	8.1.1 Why Distributed?
	8.1.2 Network Abstractions
	8.1.3 Hardware and Software Architectures
	8.1.4 Message Passing Programming

	8.2 Networks for Embedded Systems
	8.2.1 The I2C Bus
	8.2.2 Ethernet
	8.2.3 Fieldbus

	8.3 Network-Based Design
	8.4 Internet-Enabled Systems
	8.4.1 Internet
	8.4.2 Internet Applications
	8.4.3 Internet Security

	8.5 Vehicles as Networks
	8.5.1 Automotive Networks
	8.5.2 Avionics

	8.6 Sensor Networks
	8.7 Design Example: Elevator Controller
	8.7.1 Theory of Operation and Requirements
	8.7.2 Specification
	8.7.3 Architecture
	8.7.4 Testing

	Summary
	Further Reading
	Questions
	Lab Exercises

	Chapter 9. System Design Techniques
	Introduction
	9.1 Design Methodologies
	9.1.1 Why Design Methodologies?
	9.1.2 Design Flows

	9.2 Requirements Analysis
	9.3 Specifications
	9.3.1 Control-Oriented Specification Languages
	9.3.2 Advanced Specifications

	9.4 System Analysis and Architecture Design
	9.5 Quality Assurance
	9.5.1 Quality Assurance Techniques
	9.5.2 Verifying the Specification
	9.5.3 Design Reviews

	Summary
	Further Reading
	Questions
	Lab Exercises

	Appendix A. UML Notations
	Introduction
	A.1 Primitive Elements
	A.2 Diagram Types
	A.2.1 Class Diagram
	A.2.2 State Diagram
	A.2.3 Sequence and Collaboration Diagrams

	Glossary
	References
	Index

